Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity
Abstract
1. Introduction
2. The Enhanced Kudryashov’s Procedure
3. Cubic–Quartic Nonlinearity
3.1. Linear Temporal Evolution
3.2. Generalized Temporal Evolution
4. Generalized Cubic-Quartic Nonlinearity
4.1. Linear Temporal Evolution
4.2. Generalized Temporal Evolution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures. Phys. Lett. A 2022, 440, 128146. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 2023, 32, 2350008. [Google Scholar] [CrossRef]
- Hong, W.P. Existence Conditions for Stable Stationary Solitons of the Cubic-Quintic Complex Ginzburg-Landau Equation with a Viscosity Term. Z. Naturforschung A 2008, 63, 757–762. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik 2022, 259, 168888. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index. Appl. Math. Lett. 2022, 128, 107888. [Google Scholar] [CrossRef]
- Sonmezoglu, A. Stationary optical solitons having Kudryashov’s quintuple power law nonlinearity by extended G/G–expansion. Optik 2022, 253, 168521. [Google Scholar] [CrossRef]
- Sonmezoglu, A.; Ekici, M.; Biswas, A. Stationary optical solitons with cubic–quartic law of refractive index and nonlinear chromatic dispersion. Phys. Lett. A 2021, 410, 127541. [Google Scholar] [CrossRef]
- Yalçı, A.M.; Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. Opt. Quantum Electron. 2022, 54, 167. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z. Envelope compactons and solitary patterns. Phys. Lett. A 2006, 355, 212–215. [Google Scholar] [CrossRef]
- Anam, N.; Ahmed, T.; Atai, J. Bragg Grating Solitons in a Dual-core System with Separated Bragg Grating and Cubic-quintic Nonlinearity. Photoptics 2019, 24–28. [Google Scholar] [CrossRef]
- Anam, N.; Atai, J. Dynamics of colliding Bragg solitons in a dual-core system with separated grating and cubic-quintic nonlinearity. In Proceedings of the 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Online, 12–16 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 205–206. [Google Scholar]
- Anam, N.; Atai, J. Moving Bragg Solitons in a Coupler with Separated Grating and Cubic-Quintic Nonlinearity. In Proceedings of the 2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 13–17 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 105–106. [Google Scholar]
- Anam, N.; Atai, J. Interactions of Bragg Solitons in a Semilinear Coupler with Separated Grating and Cubic-Quintic Nonlinearity. In Proceedings of the 2019 IEEE Photonics Conference (IPC), San Antonio, TX, USA, 29 September–3 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–2. [Google Scholar]
- Atai, J.; Malomed, B.A. Stability and interactions of solitons in two-component active systems. Phys. Rev. E 1996, 54, 4371. [Google Scholar] [CrossRef] [PubMed]
- Atai, J.; Malomed, B.A. Spatial solitons in a medium composed of self-focusing and self-defocusing layers. Phys. Lett. A 2002, 298, 140–148. [Google Scholar] [CrossRef]
- Inui, K.; Nohara, B.T.; Yamano, T.; Arimoto, A. On Solitons of Standing Wave Solutions for the Cubic-Quartic Nonlinear Schrodinger equation (Dynamics of Functional Equations and Mathematical Models). Kyoto Univ. Res. Inf. Repos. 2009, 1637, 145–156. [Google Scholar]
- Liu, N.; Guo, B. Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach. Nonlinear Dyn. 2020, 100, 629–646. [Google Scholar] [CrossRef]
- Dutta, H.; Günerhan, H.; Ali, K.K.; Yilmazer, R. Exact soliton solutions to the cubic-quartic non-linear Schrödinger equation with conformable derivative. Front. Phys. 2020, 8, 62. [Google Scholar] [CrossRef]
- Nohara, B.T. Governing equations of envelope surface created by nearly bichromatic waves propagating on an elastic plate and their stability. Jpn. J. Ind. Appl. Math. 2005, 22, 87–109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnous, A.H.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Moshokoa, S.P. Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity. Electronics 2022, 11, 3653. https://doi.org/10.3390/electronics11223653
Arnous AH, Biswas A, Yıldırım Y, Moraru L, Moldovanu S, Moshokoa SP. Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity. Electronics. 2022; 11(22):3653. https://doi.org/10.3390/electronics11223653
Chicago/Turabian StyleArnous, Ahmed H., Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, and Seithuti P. Moshokoa. 2022. "Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity" Electronics 11, no. 22: 3653. https://doi.org/10.3390/electronics11223653
APA StyleArnous, A. H., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., & Moshokoa, S. P. (2022). Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity. Electronics, 11(22), 3653. https://doi.org/10.3390/electronics11223653