Image Large Rotation and Scale Estimation Using the Gabor Filter
Abstract
:1. Introduction
- This paper introduces a novel estimation method for scale and rotation using the Gabor filter and PCNN.
- We designed a modified PCNN model for measuring similarity, which is robust against rotation, shift, and translation.
- This paper presents a novel method for scale estimation based on the Gabor feature image.
2. Related Works
3. Proposed Algorithm
3.1. Gabor Features
3.1.1. Gabor Filter
3.1.2. Gabor Feature
3.2. Computation of the Measuring Similarity
3.2.1. PCNN-Based Feature Extraction Method
3.2.2. Measuring the Similarity
3.3. Rotation Estimation Based on the Gabor Features
Algorithm 1: Rotation estimation. |
3.4. Gabor-Filter-Based Scale Estimation
4. Experimental Results and Discussion
4.1. Experimental Settings
4.2. Rotation Estimation Error
4.3. Scale Estimation Error
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PCNN | Pulse-coupled neural network |
mPCNN | Modified pulse-coupled neural network |
POC | Phase-only correlation |
References
- Cao, W. Applying image registration algorithm combined with CNN model to video image stitching. J. Supercomput. 2021, 77, 13879–13896. [Google Scholar] [CrossRef]
- Jose, J.; Gautam, N.; Tiwari, M.; Tiwari, T.; Suresh, A.; Sundararaj, V.; Rejeesh, M. An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion. Biomed. Signal Process. Control 2021, 66, 102480. [Google Scholar] [CrossRef]
- Kumar, S.; Azartash, H.; Biswas, M.; Nguyen, T. Real-time affine global motion estimation using phase correlation and its application for digital image stabilization. IEEE Trans. Image Process. 2011, 20, 3406–3418. [Google Scholar] [CrossRef]
- Oh, C.; Kim, H.; Cho, H. Rotation Estimation and Segmentation for Patterned Image Vision Inspection. Electronics 2021, 10, 3040. [Google Scholar] [CrossRef]
- Paul, S.; Pati, U.C. A comprehensive review on remote sensing image registration. Int. J. Remote Sens. 2021, 42, 5396–5432. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, C.; Fang, M. Self-calibration method of gyroscope and camera in video stabilization. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 958–962. [Google Scholar]
- Ren, Z.; Fang, M.; Chen, C.; Kaneko, S.I. Video stabilization algorithm based on virtual sphere model. J. Electron. Imaging 2021, 30, 021002. [Google Scholar] [CrossRef]
- Zhang, Y.; Mei, X.; Ma, Y.; Jiang, X.; Peng, Z.; Huang, J. Hyperspectral Panoramic Image Stitching Using Robust Matching and Adaptive Bundle Adjustment. Remote Sens. 2022, 14, 4038. [Google Scholar] [CrossRef]
- Aguiar, M.J.R.; Alves, T.d.R.; Honório, L.M.; Junior, I.C.; Vidal, V.F. Performance Evaluation of Bundle Adjustment with Population Based Optimization Algorithms Applied to Panoramic Image Stitching. Sensors 2021, 21, 5054. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Tan, Z.; Ding, Y. Accurate line reconstruction for point and line-based stereo visual odometry. IEEE Access 2019, 7, 185108–185120. [Google Scholar] [CrossRef]
- Tang, C.; Zhao, X.; Chen, J.; Chen, L.; Zhou, Y. Fast stereo visual odometry based on LK optical flow and ORB-SLAM2. Multimed. Syst. 2020, 1–10. [Google Scholar] [CrossRef]
- Zhan, K.; Teng, J.; Ma, Y. Spiking Cortical Model for Rotation and Scale Invariant Texture Retrieval. J. Inf. Hiding Multim. Signal Process. 2013, 4, 155–165. [Google Scholar]
- Rizzini, D.L. Angular Radon spectrum for rotation estimation. Pattern Recognit. 2018, 84, 182–196. [Google Scholar] [CrossRef]
- Fujisawa, T.; Ikehara, M. High-accuracy image rotation and scale estimation using radon transform and sub-pixel shift estimation. IEEE Access 2019, 7, 22719–22728. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary robust invariant scalable keypoints. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2548–2555. [Google Scholar]
- Wan, Y.; Wei, N. A fast algorithm for recognizing translated, rotated, reflected, and scaled objects from only their projections. IEEE Signal Process. Lett. 2009, 17, 71–74. [Google Scholar] [CrossRef]
- Zhang, X.; Homma, N.; Ichiji, K.; Abe, M.; Sugita, N.; Yoshizawa, M. A faster 1-D phase-only correlation-based method for estimations of translations, rotation and scaling in images. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2014, 97, 809–819. [Google Scholar] [CrossRef]
- Faugeras, O.D.; Lustman, F. Motion and structure from motion in a piecewise planar environment. Int. J. Pattern Recognit. Artif. Intell. 1988, 2, 485–508. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hanson, A.R. 3D reconstruction based on homography mapping. In Proceedings of the ARPA96; 1996; pp. 1007–1012. Available online: https://www.semanticscholar.org/paper/3-D-Reconstruction-Based-on-Homography-Mapping-Zhangy-Allen/cc16b477fd05d7c52d6d2e0222a962f68debf430 (accessed on 5 October 2022).
- Malis, E.; Vargas, M. Deeper Understanding of the Homography Decomposition for Vision-Based Control. Ph.D. Thesis, INRIA, Antibes, France, 2007. [Google Scholar]
- Pan, B.; Wang, Y.; Tian, L. Automated initial guess in digital image correlation aided by Fourier–Mellin transform. Opt. Eng. 2017, 56, 014103. [Google Scholar] [CrossRef]
- Pan, B.; Tian, L.; Song, X. Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. Ndt E Int. 2016, 79, 73–80. [Google Scholar] [CrossRef]
- Pan, B.; Li, K. A fast digital image correlation method for deformation measurement. Opt. Lasers Eng. 2011, 49, 841–847. [Google Scholar] [CrossRef]
- Yu, K.; Yang, R.; Zeng, H.; Peng, A. Joint estimation of image rotation angle and scaling factor. In Proceedings of the 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Tokyo, Japan, 14–17 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1716–1721. [Google Scholar]
- Chen, C.; Ni, J.; Shen, Z. Effective estimation of image rotation angle using spectral method. IEEE Signal Process. Lett. 2014, 21, 890–894. [Google Scholar]
- Shen, L.; Bai, L.; Fairhurst, M. Gabor wavelets and general discriminant analysis for face identification and verification. Image Vis. Comput. 2007, 25, 553–563. [Google Scholar] [CrossRef]
- Kang, X.; Li, C.; Li, S.; Lin, H. Classification of hyperspectral images by Gabor filtering based deep network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1166–1178. [Google Scholar] [CrossRef]
- Chen, Q.S.; Defrise, M.; Deconinck, F. Symmetric phase-only matched filtering of Fourier–Mellin transforms for image registration and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 1156–1168. [Google Scholar] [CrossRef]
- Giarra, M.N.; Charonko, J.J.; Vlachos, P.P. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation. Meas. Sci. Technol. 2015, 26, 035301. [Google Scholar] [CrossRef]
- Xu, Q.; Long, X.; Kuang, H.; Schwertfeger, S. Rotation Estimation for Omni-directional Cameras Using Sinusoid Fitting. J. Intell. Robot. Syst. 2021, 103, 10. [Google Scholar] [CrossRef]
- Rizzini, D.L.; Fontana, E. Rotation Estimation Based on Anisotropic Angular Radon Spectrum. IEEE Robot. Autom. Lett. 2022, 7, 7279–7286. [Google Scholar] [CrossRef]
- Ryu, B.H.; Lee, I.H.; Kang, B.S.; Kim, K.T. Frame Selection Method for ISAR Imaging of 3-D Rotating Target Based on Time-Frequency Analysis and Radon Transform. IEEE Sens. J. 2022, 22, 19953–19964. [Google Scholar] [CrossRef]
- Self-supervised optical flow derotation network for rotation estimation of a spherical camera. Adv. Robot. 2021, 35, 118–128. [CrossRef]
- Zhang, J.Y.; Ramanan, D.; Tulsiani, S. RelPose: Predicting Probabilistic Relative Rotation for Single Objects in the Wild. arXiv 2022, arXiv:2208.05963. [Google Scholar]
- Gao, G.; Lauri, M.; Wang, Y.; Hu, X.; Zhang, J.; Frintrop, S. 6D object pose regression via supervised learning on point clouds. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3643–3649. [Google Scholar]
- Chen, W.; Jia, X.; Chang, H.J.; Duan, J.; Shen, L.; Leonardis, A. Fs-net: Fast shape-based network for category-level 6d object pose estimation with decoupled rotation mechanism. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 1581–1590. [Google Scholar]
- Bukschat, Y.; Vetter, M. EfficientPose: An efficient, accurate and scalable end-to-end 6D multi object pose estimation approach. arXiv 2020, arXiv:2011.04307. [Google Scholar]
- Johnson, J.L.; Ritter, D. Observation of periodic waves in a pulse-coupled neural network. Opt. Lett. 1993, 18, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Kinser, J.M.; Johnson, J.L. Stabilized input with a feedback pulse-coupled neural network. Opt. Eng. 1996, 35, 2158–2161. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Zhu, Y.; Ma, Y. Review of image fusion based on pulse-coupled neural network. Arch. Comput. Methods Eng. 2016, 23, 659–671. [Google Scholar] [CrossRef]
- Johnson, J.L.; Taylor, J.R.; Anderson, M. Pulse-coupled neural network shadow compensation. In Proceedings of the Applications and Science of Computational Intelligence II, Orlando, FL, USA, 18–22 July 1999; SPIE: Cergy-Pontoise, France, 1999; Volume 3722, pp. 452–456. [Google Scholar]
- Mehrtash, N.; Jung, D.; Klar, H. Image preprocessing with dynamic synapses. Neural Comput. Appl. 2003, 12, 33–41. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Zhao, X. Airplane extraction and identification by improved PCNN with wavelet transform and modified Zernike moments. Imaging Sci. J. 2014, 62, 27–34. [Google Scholar] [CrossRef]
- Mohammed, M.M.; Badr, A.; Abdelhalim, M.B. Image classification and retrieval using optimized pulse-coupled neural network. Expert Syst. Appl. 2015, 42, 4927–4936. [Google Scholar] [CrossRef]
- Zhan, K.; Shi, J.; Wang, H.; Xie, Y.; Li, Q. Computational mechanisms of pulse-coupled neural networks: A comprehensive review. Arch. Comput. Methods Eng. 2017, 24, 573–588. [Google Scholar] [CrossRef]
- Grigorescu, S.E.; Petkov, N.; Kruizinga, P. Comparison of texture features based on Gabor filters. IEEE Trans. Image Process. 2002, 11, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Rajadell, O.; Garcia-Sevilla, P.; Pla, F. Spectral–spatial pixel characterization using Gabor filters for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2012, 10, 860–864. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Bi, S.; Li, H.; Gu, Y.; Zhai, C. Fast initial value estimation in digital image correlation for large rotation measurement. Opt. Lasers Eng. 2020, 127, 105838. [Google Scholar] [CrossRef]
- ImageProcessingPlace. n.d. Available online: https://www.imageprocessingplace.com/ (accessed on 2 October 2022).
Image | SURF | BRISK | Fourier–Mellin | Proposed | ||||
---|---|---|---|---|---|---|---|---|
Cameraman | 2.0656 | 1.7754 | 0.0071 | 0.0094 | 0.0030 | 0.0130 | 0.0310 | 0.0210 |
House | 1.0752 | 1.9614 | 0.7485 | 0.0222 | N/A | 0.0257 | 0.0240 | 0.0210 |
Jetplane | 2.6262 | 1.1353 | 0.0292 | 0.0196 | 0.0139 | 0.0110 | 0.0139 | 0.0220 |
Lake | 0.0780 | 0.7229 | 0.1115 | 0.0345 | 0.0094 | 0.0235 | 0.0150 | 0.0180 |
Lena | 5.2738 | 6.2657 | 0.0538 | 0.0646 | 0.0060 | 0.0318 | 0.0060 | 0.0200 |
Livingroom | 0.5639 | 0.2146 | 0.0300 | 0.0380 | 0.0064 | 0.0103 | 0.0010 | 0.0220 |
Mandril | 0.1650 | 1.8230 | 0.0452 | 0.0583 | 0.0052 | 0.0400 | 0.0500 | 0.0130 |
Peppers | 0.9886 | 1.3508 | 0.0476 | 0.0416 | N/A | 0.0205 | 0.0050 | 0.0030 |
Pirate | 0.9957 | 0.7683 | 0.1246 | 0.1063 | 0.0042 | 0.0073 | 0.0010 | 0.0680 |
Walkbridge | 0.0552 | 0.4822 | 0.0284 | 0.0119 | 0.0361 | 0.0619 | 0.0090 | 0.0520 |
Woman_blonde | 1.6153 | 2.4321 | 0.6264 | 0.9947 | 0.0199 | 0.0232 | 0.0010 | 0.0230 |
Woman_darkhair | 0.2877 | 0.4185 | 0.0339 | 0.0608 | N/A | 0.1218 | 0.0010 | 0.0360 |
Image | SURF | BRISK | Fourier–Mellin | Proposed | ||||
---|---|---|---|---|---|---|---|---|
Cameraman | 2.8569 | 4.9632 | 0.0115 | 0.0157 | 0.0091 | 0.0145 | 0.0360 | 0.0240 |
House | 0.8372 | 0.4988 | 0.0096 | 0.0214 | N/A | 0.0223 | 0.0050 | 0.0020 |
Jetplane | 0.9996 | 0.3739 | 0.0655 | 0.0347 | 0.0112 | 0.0088 | 0.0070 | 0.0280 |
Lake | 0.1581 | 0.5378 | 0.3017 | 0.1550 | 0.0048 | 0.0089 | 0.0580 | 0.0840 |
Lena | 1.3434 | 0.7850 | 0.0048 | 0.0194 | 0.0009 | 0.0089 | 0.0030 | 0.0370 |
Livingroom | 0.5039 | 0.8053 | 0.0053 | 0.0034 | 0.0238 | 0.0323 | 0.0080 | 0.0220 |
Mandril | 2.1213 | 4.2984 | 0.0592 | 0.0515 | 0.0011 | 0.0190 | 0.0011 | 0.0570 |
Peppers | 0.1188 | 0.2257 | 0.0021 | 0.0226 | 0.0172 | 0.0316 | 0.0220 | 0.0010 |
Pirate | 1.1460 | 2.2397 | 1.6051 | 1.2322 | 0.0001 | 0.0176 | 0.0330 | 0.0150 |
Walkbridge | 1.5270 | 1.9900 | 0.0358 | 0.0172 | 0.0110 | 0.0045 | 0.0520 | 0.0130 |
Woman_blonde | 0.1100 | 0.8399 | 0.1133 | 0.1483 | 0.0151 | 0.0107 | 0.0100 | 0.0430 |
Woman_darkhair | 0.5779 | 1.9904 | 0.0404 | 0.1131 | N/A | 0.0058 | 0.0590 | 0.0052 |
Image | SURF | BRISK | Fourier–Mellin | Proposed | ||||
---|---|---|---|---|---|---|---|---|
Cameraman | 0.0187 | 0.0164 | 0.0066 | 0.0069 | 0.0006 | 0.0006 | 0.0080 | 0.0012 |
House | 0.0347 | 0.0083 | 0.0014 | 0.0000 | N/A | 0.0026 | 0.0022 | 0.0170 |
Jetplane | 0.0153 | 0.0059 | 0.0006 | 0.0005 | 0.0011 | 0.0011 | 0.0022 | 0.0012 |
Lake | 0.0191 | 0.0218 | 0.0010 | 0.0025 | 0.0008 | 0.0010 | 0.1369 | 0.1193 |
Lena | 0.0100 | 0.0131 | 0.0013 | 0.0019 | 0.0010 | 0.0001 | 0.0022 | 0.0012 |
Livingroom | 0.0102 | 0.0058 | 0.0001 | 0.0003 | 0.0005 | 0.0013 | 0.0460 | 0.0227 |
Mandril | 0.0055 | 0.0049 | 0.0001 | 0.0003 | 0.0005 | 0.0009 | 0.0022 | 0.0012 |
Peppers | 0.0140 | 0.0173 | 0.0007 | 0.0004 | N/A | 0.0008 | 0.0022 | 0.0002 |
Pirate | 0.0073 | 0.0057 | 0.0010 | 0.0009 | 0.0002 | 0.0010 | 0.0071 | 0.0061 |
Walkbridge | 0.0169 | 0.0166 | 0.0008 | 0.0000 | 0.0004 | 0.0021 | 0.0193 | 0.0193 |
Woman_blonde | 0.0175 | 0.0229 | 0.0097 | 0.0111 | 0.0013 | 0.0012 | 0.0026 | 0.0213 |
Woman_darkhair | 0.0099 | 0.0011 | 0.0003 | 0.0011 | N/A | 0.0031 | 0.0022 | 0.0022 |
Size | Scale | SURF | BRISK | Fourier–Mellin | Proposed |
---|---|---|---|---|---|
512 | 0.5 | 0.051 | 0.310 | 0.143 | 12.965 |
512 | 0.8 | 0.061 | 0.306 | 0.196 | 23.104 |
512 | 1.0 | 0.077 | 0.311 | 0.283 | 33.885 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Jia , F.; Wang, X. Image Large Rotation and Scale Estimation Using the Gabor Filter. Electronics 2022, 11, 3471. https://doi.org/10.3390/electronics11213471
Tang W, Jia F, Wang X. Image Large Rotation and Scale Estimation Using the Gabor Filter. Electronics. 2022; 11(21):3471. https://doi.org/10.3390/electronics11213471
Chicago/Turabian StyleTang, Wei, Fangxiu Jia , and Xiaoming Wang. 2022. "Image Large Rotation and Scale Estimation Using the Gabor Filter" Electronics 11, no. 21: 3471. https://doi.org/10.3390/electronics11213471
APA StyleTang, W., Jia , F., & Wang, X. (2022). Image Large Rotation and Scale Estimation Using the Gabor Filter. Electronics, 11(21), 3471. https://doi.org/10.3390/electronics11213471