Efficient Strategies for Scalable Electrical Distribution Network Planning Considering Geopositioning
Abstract
:1. Introduction
2. Related Works
3. Problem Formulation
3.1. First Stage—Clustering
3.2. Second Stage (MST-FW)
4. Analysis of Results
Case Study Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosisio, A.; Moncecchi, M.; Morotti, A.; Merlo, M. Machine learning and GIS approach for electrical load assessment to increase distribution networks resilience. Energies 2021, 14, 4133. [Google Scholar] [CrossRef]
- Jooshaki, M.; Karimi-Arpanahi, S.; Lehtonen, M.; Millar, R.J.; Fotuhi-Firuzabad, M. Reliability-Oriented Electricity Distribution System Switch and Tie Line Optimization. IEEE Access 2020, 8, 130967–130978. [Google Scholar] [CrossRef]
- Valenzuela, A.; Inga, E.; Simani, S. Planning of a resilient underground distribution network using georeferenced data. Energies 2019, 12, 644. [Google Scholar] [CrossRef]
- Inga, E.; Campaña, M.; Hincapié, R.; Moscoso-Zea, O. Optimal deployment of FiWi networks using heuristic method for integration microgrids with smart metering. Sensors 2018, 18, 2724. [Google Scholar] [CrossRef] [PubMed]
- Diaaeldin, I.M.; Aleem, S.H.; El-Rafei, A.; Abdelaziz, A.Y.; Zobaa, A.F. A novel graphically-based network reconfiguration for power loss minimization in large distribution systems. Mathematics 2019, 7, 1182. [Google Scholar] [CrossRef]
- Ustun, T.S.; Ayyubi, S. Automated network topology extraction based on graph theory for distributed microgrid protection in dynamic power systems. Electronics 2019, 8, 655. [Google Scholar] [CrossRef]
- Inga, E.; Campaña, M.; Hincapié, R.; Moscoso-Zea, O. Optimal dimensioning of electrical distribution networks considering stochastic load demand and voltage levels. Commun. Comput. Inf. Sci. 2018, 833, 200–215. [Google Scholar] [CrossRef]
- Pavón, W.; Inga, E.; Simani, S. Optimal routing an ungrounded electrical distribution system based on heuristic method with micro grids integration. Sustainability 2019, 11, 1607. [Google Scholar] [CrossRef]
- Bosisio, A.; Berizzi, A.; Amaldi, E.; Bovo, C.; Sun, X.A. Optimal feeder routing in urban distribution networks planning with layout constraints and losses. J. Mod. Power Syst. Clean Energy 2020, 8, 1005–1014. [Google Scholar] [CrossRef]
- Inga, E.; Inga, J.; Ortega, A. Novel approach sizing and routing of wireless sensor networks for applications in smart cities. Sensors 2021, 21, 4692. [Google Scholar] [CrossRef]
- Gholizadeh-Roshanagh, R.; Zare, K.; Marzband, M. An A-Posteriori Multi-Objective Optimization Method for MILP-Based Distribution Expansion Planning. IEEE Access 2020, 8, 60279–60292. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, D.; Zeng, G.; Yu, T. A Practical Large-Scale Distribution Network Planning Model Based on Elite Ant-Q. IEEE Access 2020, 8, 58912–58922. [Google Scholar] [CrossRef]
- Püvi, V.; Millar, R.J.; Saarijärvi, E.; Hayami, K.; Arbelot, T.; Lehtonen, M. Slime mold inspired distribution network initial solution. Energies 2020, 13, 6278. [Google Scholar] [CrossRef]
- Kisse, J.M.; Braun, M.; Letzgus, S.; Kneiske, T.M. A GIS-Based planning approach for urban power and natural gas distribution grids with different heat pump scenarios. Energies 2020, 13, 4052. [Google Scholar] [CrossRef]
- Miloca, S.A.; Volpi, N.M.; Yuan, J.; Pinto, C.L. Expansion planning problem in distribution systems with reliability evaluation: An application in real network using georeferenced database. Int. J. Electr. Power Energy Syst. 2015, 70, 9–16. [Google Scholar] [CrossRef]
- Dorji, C.; Khawash, S.; Lhamo, C.; Drukchen, N. GIS Approach to Distribution Network of Phuentsholing Town. In Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks, CICN 2015, Jabalpur, India, 12–14 December 2015; pp. 1515–1519. [Google Scholar] [CrossRef]
- Kamble, S.G.; Vadirajacharya, K.; Patil, U.V. Decision making in power distribution system reconfiguration by blended biased and unbiased weightage method. J. Sens. Actuator Netw. 2019, 8, 20. [Google Scholar] [CrossRef]
- Pisano, G.; Chowdhury, N.; Coppo, M.; Natale, N.; Petretto, G.; Soma, G.G.; Turri, R.; Pilo, F. Synthetic models of distribution networks based on open data and georeferenced information. Energies 2019, 12, 4500. [Google Scholar] [CrossRef]
- Hauk, C.; Ulbig, A.; Moser, A. Integrated planning of grids and energy conversion units in municipal multi-energy carrier systems. Energy Inf. 2021, 4, 19. [Google Scholar] [CrossRef]
- Medeiros, T.S.; Almeida, C.F.; Kagan, N.; Kagan, H.; Rosa, L.H.; Gemignani, M.M.; Vasconcelos, F.M.; Dominice, A.; Santos, F.A.; Silva, E.D.; et al. Distribution Systems Planning Considering Operational Performance and Power Quality Indices. J. Control Autom. Electr. Syst. 2021, 32, 1678–1689. [Google Scholar] [CrossRef]
- Leite, J.B.; Peralta, R.A.V.; Mantovani, J.R.S. Restoration switching analysis in the integrated architecture for distribution network operation. Electr. Power Syst. Res. 2021, 194, 107069. [Google Scholar] [CrossRef]
- Bonetti, C.; Bianchotti, J.; Vega, J.; Puccini, G. Optimal segmentation of electrical distribution networks. IEEE Lat. Am. Trans. 2021, 19, 1375–1382. [Google Scholar] [CrossRef]
- Hamza, M.H.; Chmit, M. GIS-Based Planning and Web/3D Web GIS Applications for the Analysis and Management of MV/LV Electrical Networks (A Case Study in Tunisia). Appl. Sci. 2022, 12, 2554. [Google Scholar] [CrossRef]
- Toorchi, N.; Hu, F.; Bentley, E.S.; Kumar, S. Skeleton-Based Swarm Routing (SSR): Intelligent Smooth Routing for Dynamic UAV Networks. IEEE Access 2021, 9, 1286–1303. [Google Scholar] [CrossRef]
- Abhilash, B. Geo-referenced synthetic low-voltage distribution networks: A data-driven approach. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Espoo, Finland, 18–21 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Teh, E.K.; Zawawi, M.A.M.; Mohamed, M.F.P.; Isa, N.A.M. Practical full chip clock distribution design with a flexible topology and hybrid metaheuristic technique. IEEE Access 2021, 9, 14816–14835. [Google Scholar] [CrossRef]
- Valenzuela, A.; Montalvo, I.; Inga, E. A decision-making tool for electric distribution network planning based on heuristics and georeferenced data. Energies 2019, 12, 4065. [Google Scholar] [CrossRef]
- Youssef, K.H. Optimal routing of ring power distribution systems. Electr. Power Syst. Res. 2021, 199, 107392. [Google Scholar] [CrossRef]
- Huo, J.; Yang, J.; Al-Neshmi, H.M.M. Design of Layered and Heterogeneous Network Routing Algorithm for Field Observation Instruments. IEEE Access 2020, 8, 135866–135882. [Google Scholar] [CrossRef]
- Abeysinghe, S.; Wu, J.; Sooriyabandara, M.; Abeysekera, M.; Xu, T.; Wang, C. Topological properties of medium voltage electricity distribution networks. Appl. Energy 2018, 210, 1101–1112. [Google Scholar] [CrossRef]
- Ma, Z.F.; Jiang, M.; Khoshmanesh, M.; Cheng, X. Time Series Phase Unwrapping Based on Graph Theory and Compressed Sensing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
Paper | Thematic | Problem | Constraints | Proposal | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | Graph Theory | Optimization | Scalability | Reliability | Geo-Referenced | Cost | Planning | Routing | Capacity | Coverage | Scalability | Thermal Losses | Routing | Deployment | Planning |
Hamza, 2022 [23] | |||||||||||||||
Bosisio, 2021 [1] | |||||||||||||||
Valenzuela, 2021 [3] | |||||||||||||||
Hauk, 2021 [19] | |||||||||||||||
Medeiros, 2021 [20] | |||||||||||||||
Leite, 2021 [21] | |||||||||||||||
Bonetti, 2021 [22] | |||||||||||||||
Bosisio, 2020 [9] | |||||||||||||||
Kamble, 2019 [17] | |||||||||||||||
Pisano, 2019 [18] | |||||||||||||||
Dorji, 2016 [16] | |||||||||||||||
Miloca, 2015 [15] | |||||||||||||||
Current work |
Item | Description |
---|---|
Overall unit demand (W) | |
Single phase line voltage (V) | |
Three-phase line voltage (V) | |
Medium line voltage (V) | |
Power factor | |
LV-MV Conductor resistance () | |
LV-MV Conductor reactance () | |
Voltage drop percentage (%) | |
Capacity of transformers (kVA) | |
Latitude, longitude first point | |
Latitude, longitude second point | |
Longitude coordinate limit | |
Latitude coordinate limit | |
OpenStreetMap (.osm) | |
Average radius of the earth (6371 km) | |
i | Variable related to users—house |
j | Variable related to candidate sites—intersections |
kVA | 3 1 | # of Users | Current (A) | V (V/km) | Distance (km) |
---|---|---|---|---|---|
100 | 3 | 24 | 64.8 | 68.5 | 0.112 |
75 | 3 | 18 | 48.6 | 51.3 | 0.149 |
50 | 1 | 12 | 102.9 | 62.7 | 0.066 |
25 | 1 | 6 | 51.4 | 31.3 | 0.133 |
10 | 1 | 2 | 34.3 | 20.9 | 0.200 |
Nomenclature | Description |
---|---|
Home coordinates (users) | |
Intersection coordinates (candidate sites) | |
N | Home number(users) |
T | Number of intersections (candidate sites) |
Distance between users and candidate sites (km) (Manhattan, Haversine) | |
Distance between candidate sites (km) (Haversine) | |
User coverage matrix | |
Users and transformers connection matrix | |
Transformers vector | |
Transformer capacity matrix (power, number of users, maximum distance). | |
Link matrix of transformers |
Nomenclature | Value | Unit |
---|---|---|
3500 | W | |
127 | V | |
220 | V | |
13,200 | V | |
0.85 | ||
R | 0.66 | |
X | 0.093 | |
0.52 | ||
0.42 | ||
3.5 | % | |
3 | % | |
100-75-50-25-10 | kVA | |
6371 | km |
Stage | Number of Users | Transformer 100 kVA | Transformer 75 kVA | Transformer 50 kVA | Transformer 25 kVA | Transformer 10 kVA | Time s |
---|---|---|---|---|---|---|---|
1 | 98 | 3 | 1 | 0 | 2 | 0 | 20 |
2 | 557 | 17 | 5 | 4 | 4 | 10 | 172 |
3 | 1356 | 41 | 9 | 13 | 25 | 20 | 385 |
4 | 4338 | 117 | 56 | 26 | 63 | 75 | 2963 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara, H.; Inga, E. Efficient Strategies for Scalable Electrical Distribution Network Planning Considering Geopositioning. Electronics 2022, 11, 3096. https://doi.org/10.3390/electronics11193096
Lara H, Inga E. Efficient Strategies for Scalable Electrical Distribution Network Planning Considering Geopositioning. Electronics. 2022; 11(19):3096. https://doi.org/10.3390/electronics11193096
Chicago/Turabian StyleLara, Hector, and Esteban Inga. 2022. "Efficient Strategies for Scalable Electrical Distribution Network Planning Considering Geopositioning" Electronics 11, no. 19: 3096. https://doi.org/10.3390/electronics11193096
APA StyleLara, H., & Inga, E. (2022). Efficient Strategies for Scalable Electrical Distribution Network Planning Considering Geopositioning. Electronics, 11(19), 3096. https://doi.org/10.3390/electronics11193096