Robust Cyber-Physical System Enabled Smart Healthcare Unit Using Blockchain Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Proposed Methodology
Module-Wise Implementation Procedure
- The main motive of the module is to collect the raw medical data from the MEHEALTH repository. This data consists of various patients’ heart signal rates.
- This data is processed by utilizing the Grey filter approach. The BGF-CNN approach is used for multiple purposes such as noise removal and classification. Volume-aligned CNN is applied to the proposed methodology to classify the results as healthy and unhealthy heart signals.
Algorithm 1: Preprocess: Grey Filter pseudo code |
Input: Patient Data ‘Pi’ |
Output: Preprocessed Data ‘PDi’ |
Process: |
Repeat |
For each patient, ‘Pi’ |
Express positive time sequence data as |
Pj ={P1, P2,… Pn} where ‘j ‘is the patient source sequence number. |
Find assembled sequence by using ‘AGO’ where AGO = assembled Multiplying operation |
P j + 1 = { P j + 1 (1), P j + 1 (2)… P j + 1 (n)} |
Where P j + 1 (n) =∑ni = 1 Pj (i) |
Generate feature map (F). It is obtained using the average value of two consecutive activities. |
Fj = { f j (2), f j (3),… f j (n),} |
Where f j (n) = ½ f j (n) + ½ f j (n−1) |
End for |
Until (obtained feature map for all patient activities) |
Return (Preprocessed Data ‘PDi’) |
Algorithm 2: Classification |
Input: Pre-processed Data ‘PDi’ |
Output: Optimal patient data ‘OP’ |
Process: |
Initialize Sample Rate ‘SR’ |
For each Pre processed Data ‘PDi’ |
Find posterior probability using |
Prob(q = 1/p) = {prob(p/q = 1)prob(q = 1)}/Prob (p) || SR |
Where Prob(p) = {{prob(p/q = 1)prob(q = 1)} + {prob(p/q = 0)prob(q = 0)}} |
Evaluate the likelihood ratio by |
Prob(q = 1/p) = {prob(p/q = 1)/Prob (p/q =1)+ prob(p/q = 0)}|| SR |
If ‘OP’ = Threshold value ‘ |
Human activity captured |
Else |
Not captured |
End if |
Return (Human activity captured set ‘OP’) |
End for |
- A decentralized application (DAPP) is used to send medical data into the blockchain.
- Configure the TEST RPC which acts like a blockchain emulator.
- Configure the metamask wallet as a chrome extension, to access the Ethereum-based blockchain-enabled DAPP.
- Generate smart contracts on TESTRPC to perform the operations over the blockchain.
- Each medical record contains transactions performed using the blockchain. Later the process on Metamask is started. ETH balance in the metamask will be deducted to operate on a block in the blockchain.
- A unique ID is allotted for each successful transaction.
Algorithm 3: Data process over a blockchain |
Input: Health and unhealthy Heart Signals Data |
Output: a Unique blockchain-based ID |
Process |
Generate a smart contract to penetrate the medical data into DAPP. |
For all the patient’s medical data |
if (ETH balance >= threshold balance) |
Compiled and deployed the process on TESTRPC |
The medical data is stored in a block as a transaction. |
A unique ID is allotted to the transaction. |
Else |
medical data on TEST RPC is not compiled |
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sodhro, A.H.; Pirbhulal, S.; Sangaiah, A.K. Convergence of IoT and product lifecycle management in medical health care. Futur. Gener. Comput. Syst. 2018, 86, 380–391. [Google Scholar] [CrossRef]
- Yan, W.; Sakairi, T. Geo CPS: Spatial challenges and opportunities for CPS in the geographic dimension. J. Urban Manag. 2019, 8, 331–341. [Google Scholar] [CrossRef]
- Yin, W.; Yang, X.; Zhang, L.; Oki, E. ECG Monitoring System Integrated with IR-UWB Radar Based on CNN. IEEE Access 2016, 4, 6344–6351. [Google Scholar] [CrossRef]
- Loubet, G.; Takacs, A.; Dragomirescu, D. Implementation of a battery-free wireless sensor for cyber-physical systems dedicated to structural health monitoring applications. IEEE Access 2019, 7, 24679–24690. [Google Scholar] [CrossRef]
- Xu, J.; Wei, L.; Wu, W.; Wang, A.; Zhang, Y.; Zhou, F. Privacy-preserving data integrity verification by using lightweight streaming authenticated data structures for healthcare cyber–physical system. Futur. Gener. Comput. Syst. 2018, 108, 1287–1296. [Google Scholar] [CrossRef]
- Zhang, P.; Schmidt, D.C.; White, J.; Lenz, G. Blockchain Technology Use Cases in Healthcare. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2018; Volume 111, pp. 1–41. [Google Scholar]
- Sciancalepore, S.; Piro, G.; Caldarola, D.; Boggia, G.; Bianchi, G. On the design of a decentralized and multi-authority access control scheme in federated and cloud-assisted Cyber-Physical Systems. IEEE Internet Things J. 2018, 5, 5190–5204. [Google Scholar] [CrossRef]
- Drosatos, G.; Kaldoudi, E. Blockchain Applications in the Biomedical Domain: A Scoping Review. Comput. Struct. Biotechnol. J. 2019, 17, 229–240. [Google Scholar] [CrossRef]
- Shrier, D.; Wu, W.; Pentland, A. Blockchain& infrastructure (identity, data security). Mass. Inst. Technol. Connect. Sci. 2016, 1, 1–19. [Google Scholar]
- Guo, H.; Li, W.; Meamari, E.; Shen, C.-C.; Nejad, M. Attribute-based Multi-Signature and Encryption for EHR Management: A Blockchain-based Solution. In Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Mercan, S.; Cebe, M.; Tekiner, E.; Akkaya, K.; Chang, M.; Uluagac, S. A Cost-efficient IoT Forensics Framework with Blockchain. In Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May 2020. [Google Scholar]
- Verma, P.; Sood, S.K.; Kaur, H. A Fog-Cloud based cyber physical system for Ulcerative Colitis diagnosis and stage classification and management. Microprocess. Microsyst. 2019, 72, 102929. [Google Scholar] [CrossRef]
- Li, X.; Xie, X.; Wei, X.; Tang, W. Ship detection and classification from optical remote sensing images: A survey. Chin. J. Aeronaut. 2021, 34, 145–163. [Google Scholar] [CrossRef]
- Farahani, B.; Barzegari, M.; Aliee, F.S.; Shaik, K.A. Towards collaborative intelligent IoT eHealth: From device to fog, and cloud. Microprocess. Microsyst. 2019, 72, 102938. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P. Exploiting smart e-Health gateways at the edge of health care internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018, 78, 641–658. [Google Scholar] [CrossRef]
- Khatoon, A. A Blockchain-Based Smart Contract System for Healthcare Management. Electronics 2020, 9, 94. [Google Scholar] [CrossRef]
- Siyal, A.A.; Junejo, A.Z.; Zawish, M.; Ahmed, K.; Khalil, A.; Soursou, G. Applications of Blockchain Technology in Medicine and Healthcare: Challenges and Future Perspectives. Cryptography 2019, 3, 3. [Google Scholar] [CrossRef]
- Ichikawa, D.; Kashiyama, M.; Ueno, T. Tamper-resistant mobile health using blockchain technology. JMIR mHealth uHealth 2017, 5, e7938. [Google Scholar] [CrossRef]
- Gupta, R.; Tanwar, S.; Al-Turjman, F.; Italiya, P.; Nauman, A.; Kim, S.W. Smart contract privacy protection using AI in cyber-physical systems: Tools, techniques and challenges. IEEE Access 2020, 8, 24746–24772. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Tanwar, S.; Bodkhe, U.; Tyagi, S.; Kumar, N. Bindaas: Blockchain-based deep-learning as-a-service in healthcare 4.0 applications. IEEE Trans. Netw. Sci. Eng. 2019, 8, 1242–1255. [Google Scholar] [CrossRef]
- Kumar, M.; Chand, S. MedHypChain: A patient-centered interoperability hyperledger-based medical healthcare system: Regulation in COVID-19 pandemic. J. Netw. Comput. Appl. 2021, 179, 102975. [Google Scholar] [CrossRef]
- Radanliev, P.; De Roure, D.; Ani, U.; Carvalho, G. The ethics of shared COVID-19 risks: An epistemological framework for ethical health technology assessment of risk in vaccine supply chain infrastructures. Health Technol. 2021, 11, 1083–1091. [Google Scholar] [CrossRef]
- Zhuang, Y.; Sheets, L.R.; Chen, Y.-W.; Shae, Z.-Y.; Tsai, J.J.P.; Shyu, C.-R. A Patient-Centric Health Information Exchange Framework Using Blockchain Technology. IEEE J. Biomed. Health Inform. 2020, 24, 2169–2176. [Google Scholar] [CrossRef]
- Radanliev, P.; De Roure, D. Epistemological and Bibliometric Analysis of Ethics and Shared Responsibility—Health Policy and IoT Systems. Sustainability 2021, 13, 8355. [Google Scholar] [CrossRef]
- Islam, A.; Al Amin, A.; Shin, S.Y. FBI: A Federated Learning-Based Blockchain-Embedded Data Accumulation Scheme Using Drones for Internet of Things. IEEE Wirel. Commun. Lett. 2022, 11, 972–976. [Google Scholar] [CrossRef]
- Priya, K.L.S.; Rupa, C. Block Chain Technology based Electoral Franchise. In Proceedings of the 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, 5–7 March 2020; pp. 1–5. [Google Scholar]
- Rupa, C.; Kumari, D.J. Network-based adaptation of blockchain technology. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 141–148. [Google Scholar]
- Samhitha, G.; Rao, D.S.; Rupa, C.; Ekshitha, Y.; Jaswanthi, R. Vyayam: Artificial Intelligence based Bicep Curl Workout Tacking System. In Proceedings of the 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 24–25 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Rupa, C.; Srivastava, G.; Gadekallu, T.R.; Maddikunta, P.K.R.; Bhattacharya, S. A Blockchain Based Cloud Integrated IoT Architecture Using a Hybrid Design. In Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 350. [Google Scholar]
- Ch, R.; Srivastava, G.; Gadekallu, T.R.; Maddikunta, P.K.R.; Bhattacharya, S. Security and privacy of UAV data using blockchain technology. J. Inf. Secur. Appl. 2020, 55, 102670. [Google Scholar] [CrossRef]
- Rupa, C.; Midhunchakkaravarthy, D.; Hasan, M.K.; Alhumyani, H.; Saeed, R.A. Industry 5.0: Ethereum blockchain technology based DApp smart contract. Math. Biosci. Eng. 2021, 18, 7010–7027. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.C.; Schulte, P.; Chuen, D.L.K. InsurTech and FinTech: Banking and Insurance Enablement. In Handbook of Blockchain, Digital Finance, and Inclusion; Academic Press: Cambridge, MA, USA; Volume 1, pp. 249–281. [CrossRef]
- Leong, K.; Sung, A. FinTech (Financial Technology): What is it and how to use technologies to create business value in fintech way? Int. J. Innov. Manag. Technol. 2018, 9, 74–78. [Google Scholar] [CrossRef]
- Patan, R.; Ghantasala, G.S.P.; Sekaran, R.; Gupta, D.; Ramachandran, M. Smart healthcare and quality of service in IoT using grey filter convolutional based cyber physical system. Sustain. Cities Soc. 2020, 59, 102141. [Google Scholar] [CrossRef]
Author | Limitations | Preservation Mode | Design/ Implement | BCT Type | Comp. Type | Comp. Approach | ||
---|---|---|---|---|---|---|---|---|
Is CPS | Is BCT | Is Computational | ||||||
[1] | No | No | Yes | GIS | Implement | Public | Machine Learning | Linear |
[2] | No | No | Yes | Cloud | Design | Na | Machine Learning | ABMS |
[3] | Yes | No | Yes | Fog | Design | Na | Deep Learning | CCNN |
[4] | No | Yes | No | Blockchain | Design | Hyper ledger | Not used | Not used |
[5] | Yes | No | Yes | Cloud | Implement | Private | Deep Learning | RCNN |
[6] | Yes | No | Yes | Cloud | Implement | Na | AI | IoT |
[7] | Yes | Yes | No | Blockchain | Implement | Na | Not used | Not used |
[8] | No | No | No | Database | Implement | MongoDB | Not used | Not used |
[9] | Yes | Yes | Yes | Blockchain | Design | Na | AI | IoT |
Proposed Method | Yes | Yes | Yes | Blockchain | Implement | Ethereum | Deep Learning | BGF-Blockchain |
Activity | Stand | SIT & RELAX | Lying | Walk | Climb | Run | Bend | Jump |
---|---|---|---|---|---|---|---|---|
Label | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
No. of Instances | Communication Overhead (KB) | |||
---|---|---|---|---|
IoMT _PLM [2] | GFB_CNN [34] | IoT_CMS [1] | Proposed System BGF_Blockchain | |
10 | 40 | 20 | 30 | 10 |
20 | 80 | 40 | 60 | 20 |
30 | 120 | 60 | 90 | 30 |
40 | 160 | 80 | 120 | 40 |
50 | 200 | 100 | 150 | 50 |
60 | 240 | 120 | 180 | 60 |
70 | 280 | 140 | 210 | 70 |
Learning Rate | 0.1 |
Population size | Input Data from sensors |
Hidden units | (10,15) |
Batch size | (32,256) |
No.of Instances | Gas Limit (Units) | Gas Cost | Gas Price CGWEI | Total ETH |
---|---|---|---|---|
10 | 205,430 | 1,276,220 | 1000 | 1.27622 |
20 | 402,860 | 2,652,440 | 2000 | 5.00488 |
30 | 518,290 | 4,018,660 | 3000 | 11.38598 |
40 | 805,720 | 5,114,880 | 4000 | 20.01952 |
50 | 1,132,150 | 6,071,100 | 5000 | 32.4055 |
100 | 2,054,300 | 12,762,200 | 10,000 | 126.622 |
Approach | Instance Latency Time | Instance Process Time | Storage | System Type | Pre-Process | Application |
---|---|---|---|---|---|---|
IoT_CMS [1] | 3.01 | 3.145 | Cloud | IoT | CMS | Everyday Energy Saving |
IoMT_PLM [2] | 2.98 | 2.345 | Cloud | IoT | PLN | Health care products |
ECG_CNN [4] | 2.78 | 4.34 | Cloud | IR-UWB | CNN | ECG monitoring |
GFB_CNN [34] | 1.94 | 1.555 | Cloud | CPS | CNN | Health Care |
Proposed System | 3.25 | 6.70 | Blockchain | CPS | CNN | Patient Data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ch, R.; Srivastava, G.; Nagasree, Y.L.V.; Ponugumati, A.; Ramachandran, S. Robust Cyber-Physical System Enabled Smart Healthcare Unit Using Blockchain Technology. Electronics 2022, 11, 3070. https://doi.org/10.3390/electronics11193070
Ch R, Srivastava G, Nagasree YLV, Ponugumati A, Ramachandran S. Robust Cyber-Physical System Enabled Smart Healthcare Unit Using Blockchain Technology. Electronics. 2022; 11(19):3070. https://doi.org/10.3390/electronics11193070
Chicago/Turabian StyleCh, Rupa, Gautam Srivastava, Yarajarla Lakshmi Venkata Nagasree, Akshitha Ponugumati, and Sitharthan Ramachandran. 2022. "Robust Cyber-Physical System Enabled Smart Healthcare Unit Using Blockchain Technology" Electronics 11, no. 19: 3070. https://doi.org/10.3390/electronics11193070
APA StyleCh, R., Srivastava, G., Nagasree, Y. L. V., Ponugumati, A., & Ramachandran, S. (2022). Robust Cyber-Physical System Enabled Smart Healthcare Unit Using Blockchain Technology. Electronics, 11(19), 3070. https://doi.org/10.3390/electronics11193070