Localization of Small Objectives from Scattering Parameter via Bistatic Measurement Configuration
Abstract
:1. Introduction
2. Overview of Scattering Parameter and Design of Imaging Function
3. Analysis of Imaging Function and Some Properties
- If then since , , and ,
- If , then since and , these terms do not contribute to determining , i.e., it is impossible to recognize the objective location through the map of .
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arridge, S. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41–R93. [Google Scholar] [CrossRef]
- Simonov, N.; Kim, B.R.; Lee, K.J.; Jeon, S.I.; Son, S.H. Advanced fast 3-D electromagnetic solver for microwave tomography imaging. IEEE Trans. Med. Imaging 2017, 36, 2160–2170. [Google Scholar] [CrossRef] [PubMed]
- Coşğun, S.; Bilgin, E.; Çayören, M. Microwave imaging of breast cancer with factorization method: SPIONs as contrast agent. Med. Phys. 2020, 47, 3113–3122. [Google Scholar] [CrossRef]
- Shea, J.D.; Kosmas, P.; Hagness, S.C.; Veen, B.D.V. Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique. Med. Phys. 2010, 37, 4210–4226. [Google Scholar] [CrossRef] [PubMed]
- Caorsi, S.; Massa, A.; Pastorino, M. A crack identification microwave procedure based on a genetic algorithm for nondestructive testing. IEEE Trans. Antennas Propag. 2001, 49, 1812–1820. [Google Scholar] [CrossRef]
- Foudazix, A.; Mirala, A.; Ghasr, M.T.; Donnell, K.M. Active microwave thermography for nondestructive evaluation of surface cracks in metal structures. IEEE Trans. Instrum. Meas. 2019, 68, 576–585. [Google Scholar] [CrossRef]
- Haynes, M.; Stang, J.; Moghaddam, M. Real-time microwave imaging of differential temperature for thermal therapy monitoring. IEEE Trans. Biomed. Eng. 2014, 61, 1787–1797. [Google Scholar] [CrossRef]
- Persson, M.; Fhager, A.; Trefnà, H.D.; Yu, Y.; McKelvey, T.; Pegenius, G.; Karlsson, J.E.; Elam, M. Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 2014, 61, 2806–2817. [Google Scholar] [CrossRef]
- Salucci, M.; Vrba, J.; Merunka, I.; Massa, A. Real-time brain stroke detection through a learning-by-examples technique—An experimental assessment. Microw. Opt. Technol. Lett. 2017, 59, 2796–2799. [Google Scholar] [CrossRef]
- Mojabi, P.; LoVetri, J. Microwave biomedical imaging using the multiplicative regularized Gauss-Newton inversion. IEEE Antennas Propag. Lett. 2009, 8, 645–648. [Google Scholar] [CrossRef]
- Rubæk, T.; Meaney, P.M.; Meincke, P.; Paulsen, K.D. Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm. IEEE Trans. Antennas Propag. 2007, 55, 2320–2331. [Google Scholar] [CrossRef]
- Chew, W.C.; Wang, Y.M. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Med. Imaging 1990, 9, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z. A new scheme based on Born iterative method for solving inverse scattering problems with noise disturbance. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1021–1025. [Google Scholar] [CrossRef]
- Bergou, E.; Diouane, Y.; Kungurtsev, V. Convergence and complexity analysis of a Levenberg–Marquardt algorithm for inverse problems. J. Optim. Theory Appl. 2020, 185, 927–944. [Google Scholar] [CrossRef]
- Franchois, A.; Pichot, C. Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method. IEEE Trans. Antennas Propag. 1997, 45, 203–215. [Google Scholar] [CrossRef]
- Abubakar, A.; van den Berg, P.M.; Mallorqui, J.J. Imaging of biomedical data using a multiplicative regularized contrast source inversion method. IEEE Trans. Microw. Theory Tech. 2002, 50, 1761–1771. [Google Scholar] [CrossRef]
- Van den Berg, P.M.; Kleinman, R.E. A contrast source inversion method. Inverse Probl. 1997, 13, 1607–1620. [Google Scholar] [CrossRef]
- Dorn, O.; Lesselier, D. Level set methods for inverse scattering. Inverse Probl. 2006, 22, R67–R131. [Google Scholar] [CrossRef]
- Irishina, N.; Dorn, O.; Moscoso, M. A level set evolution strategy in microwave imaging for early breast cancer detection. Comput. Math. Appl. 2008, 56, 607–618. [Google Scholar] [CrossRef]
- Park, W.K. Application of MUSIC algorithm in real-world microwave imaging of unknown anomalies from scattering matrix. Mech. Syst. Signal Proc. 2021, 153, 107501. [Google Scholar] [CrossRef]
- Ruvio, G.; Solimene, R.; D’Alterio, A.; Ammann, M.J.; Pierri, R. RF breast cancer detection employing a noncharacterized vivaldi antenna and a MUSIC-inspired algorithm. Int. J. RF Microw. Comput. Aided Eng. 2013, 23, 598–609. [Google Scholar] [CrossRef]
- Park, W.K. Real-time microwave imaging of unknown anomalies via scattering matrix. Mech. Syst. Signal Proc. 2019, 118, 658–674. [Google Scholar] [CrossRef]
- Park, W.K. Real-time detection of small anomaly from limited-aperture measurements in real-world microwave imaging. Mech. Syst. Signal Proc. 2022, 171, 108937. [Google Scholar] [CrossRef]
- Bevacqua, M.T.; Isernia, T.; Palmeri, R.; Akinci, M.N.; Crocco, L. Physical insight unveils new imaging capabilities of orthogonality sampling method. IEEE Trans. Antennas Propag. 2020, 68, 4014–4021. [Google Scholar] [CrossRef]
- Son, S.H.; Lee, K.J.; Park, W.K. Application and analysis of direct sampling method in real-world microwave imaging. Appl. Math. Lett. 2019, 96, 47–53. [Google Scholar] [CrossRef]
- Kirsch, A. The factorization method for Maxwell’s equations. Inverse Probl. 2004, 20, 117–134. [Google Scholar] [CrossRef]
- Chouiti, S.M.; Merad, L.; Meriah, S.M.; Derraz, F.; Raimundo, X. Monostatic imaging of an embedded object using a confocal algorithm. Int. J. Numer. Model. 2018, 31, 1–14. [Google Scholar] [CrossRef]
- Kang, S.; Lambert, M.; Park, W.K. Analysis and improvement of direct sampling method in the mono-static configuration. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1721–1725. [Google Scholar] [CrossRef]
- Zetik, R.; Thoma, R.S. Monostatic imaging of small objects in UWB sensor networks. In Proceedings of the 2008 IEEE International Conference on Ultra-Wideband, Hannover, Germany, 10–12 September 2008; Volume 2, pp. 191–194. [Google Scholar]
- Son, S.H.; Simonov, N.; Kim, H.J.; Lee, J.M.; Jeon, S.I. Preclinical prototype development of a microwave tomography system for breast cancer detection. ETRI J. 2010, 32, 901–910. [Google Scholar] [CrossRef]
- Park, W.K. Theoretical identification of coupling effect and performance analysis of single-source direct sampling method. Mathematics 2021, 9, 1065. [Google Scholar] [CrossRef]
- Chernyak, V.S. Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Sasada, S.; Masumoto, N.; Song, H.; Emi, A.; Kadoya, T.; Arihiro, K.; Kikkawa, T.; Okada, M. Microwave breast imaging using rotational bistatic impulse radar for the detection of breast cancer: Protocol for a prospective diagnostic study. JMIR Res. Protoc. 2020, 9, e17524. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.B.; Chu, T.H. Bistatic frequency-swept microwave imaging: Principle, methodology and experimental results. IEEE Trans. Microw. Theory Tech. 1993, 41, 855–861. [Google Scholar] [CrossRef]
- Comblet, F.; Khenchaf, A.; Baussard, A.; Pellen, F. Bistatic synthetic aperture radar imaging: Theory, simulations, and validations. IEEE Trans. Antennas Propag. 2006, 54, 3529–3540. [Google Scholar] [CrossRef]
- Welsh, B.M.; Gardner, C.S. Bistatic imaging lidar technique for upper atmospheric studies. Appl. Opt. 1989, 28, 82–88. [Google Scholar] [CrossRef]
- Liang, B.; Shang, X.; Zhuge, X.; Miao, J. Bistatic cylindrical millimeter-wave imaging for accurate reconstruction of high-contrast concave objects. Opt. Express 2019, 27, 14881–14892. [Google Scholar] [CrossRef]
- Cherniakov, M. Bistatic Radar: Principles and Practice; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Griffiths, H.D. Bistatic and multistatic radar. In Proceedings of the Institution of Electrical Engineers Military Radar Seminar, Shrivenham, UK, 28–30 October 2004. [Google Scholar]
- Kang, S.; Lim, M.; Park, W.K. Fast identification of short, linear perfectly conducting cracks in the bistatic measurement configuration. J. Comput. Phys. 2022, 468, 111479. [Google Scholar] [CrossRef]
- Willis, N.J.; Griffiths, H.D. Advances in Bistatic Radar; The Institution of Engineering and Technology: London, UK, 2007. [Google Scholar]
- Slaney, M.; Kak, A.C.; Larsen, L.E. Limitations of imaging with first-order diffraction tomography. IEEE Trans. Microw. Theory Tech. 1984, 32, 860–874. [Google Scholar] [CrossRef]
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Problems; Mathematics and Applications Series; Springer: New York, NY, USA, 1998. [Google Scholar]
- Kang, S.; Chae, S.; Park, W.K. A study on the orthogonality sampling method corresponding to the observation directions configuration. Res. Phys. 2022, 33, 105108. [Google Scholar] [CrossRef]
- Wang, C.; Qin, C.; Yao, Y.; Li, Y.; Wang, W. Low complexity interference alignment for mmWave MIMO channels in three-cell mobile network. IEEE J. Sel. Areas Commun. 2017, 35, 1513–1523. [Google Scholar] [CrossRef]
- Xu, W.; Gao, F.; Zhang, J.; Tao, X.; Alkhateeb, A. Deep learning based channel covariance matrix estimation with user location and scene images. IEEE Trans. Commun. 2021, 69, 8145–8158. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.-H.; Park, W.-K. Localization of Small Objectives from Scattering Parameter via Bistatic Measurement Configuration. Electronics 2022, 11, 3054. https://doi.org/10.3390/electronics11193054
Son S-H, Park W-K. Localization of Small Objectives from Scattering Parameter via Bistatic Measurement Configuration. Electronics. 2022; 11(19):3054. https://doi.org/10.3390/electronics11193054
Chicago/Turabian StyleSon, Seong-Ho, and Won-Kwang Park. 2022. "Localization of Small Objectives from Scattering Parameter via Bistatic Measurement Configuration" Electronics 11, no. 19: 3054. https://doi.org/10.3390/electronics11193054
APA StyleSon, S.-H., & Park, W.-K. (2022). Localization of Small Objectives from Scattering Parameter via Bistatic Measurement Configuration. Electronics, 11(19), 3054. https://doi.org/10.3390/electronics11193054