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Abstract: We develop a sampling-type algorithm for localizing a small object from scattering parame-
ter data measured in a bistatic configuration. To this end, we design a sampling-type imaging function
based on the integral equation formula for the scattering parameter. To clarify its applicability, we
show that the imaging function can be expressed by the bistatic angle, antenna arrangement, and
Bessel function of an integer order. This result reveals some properties of the imaging function and
influence of the selection of the bistatic angle. Numerical experiments are carried out for single and
multiple small and large objectives to illustrate the pros and cons of the developed algorithm.
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1. Introduction

There are a number of interesting and notable microwave imaging (MI) technologies
that have important applications, such as tomography imaging [1,2], breast imaging [3,4],
crack detection in nondestructive testing [5,6], thermal therapy monitoring [7], and stroke
diagnosis [8,9] that are highly related to human life.

Typically, the purpose of MI is to determine the parameter distribution of a region of
interest from measured scattering parameter data. The difficulty of this problem arises from
its intrinsic nonlinearity and ill-posedness. To alleviate this challenge, various nonlinear in-
version techniques, most of which are iteration schemes, have been developed. For example,
the Gauss–Newton inversion [10,11], Born iterative method [12,13], Levenberg–Marquardt
algorithm [14,15], contrast source inversion method [16,17], and level set method [18,19].
For a successful application of these schemes, one needs a good initial guess and a proper
selection of regularization.

Alternatively, various non-iterative schemes have been designed and successfully
applied to MI, such as multiple signal classification (MUSIC) [20,21], migration tech-
niques [22,23], direct and orthogonality sampling methods [24,25], and the factorization
method [3,26]. Most of these techniques are developed under the multistatic measurement
system (MMS). However, it is not convenient to apply MMS-based schemes in certain
applications, such as ground penetrating radar (GPT). Recently, as an alternative, various
imaging techniques in the monostatic measurement configuration have been investigated;
refer to [27–29]. However, in some problems, it is difficult to measure the scattering parame-
ter data when the transmitter and receiver are in the same position and to discern the weak
scattered signal from the relatively high antenna reflection (see [30,31] for instance). Thus,
it is natural to consider the development of an imaging technique in which the positions of
the transmitter and receiver are different.

Bistatic radar is a radar system consisting of spatially separated single transmitting
and receiving antennas [32] and bistatic imaging is a radar imaging technique using bistatic
radar. Thus, it does not belong to MMS and is very useful in several practical applications,
such as biomedical imaging for breast cancer detection [33], microwave imaging [34],
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synthetic aperture radar [35], upper atmospheric studies [36], and cylindrical millimeter-
wave imaging for concave objects [37]. We also mention [38–41] as valuable references
that contain the basic concept of bistatic radar and imaging technique and its application
to various problems. However, little has been developed for designing an effective non-
iterative scheme and investigating reliable mathematical theories to explain its applicability
and fundamental limitation. Therefore, the impetus of this research is to design a sampling-
type algorithm for imaging small objects and establish a mathematical theory.

This paper is constructed as follows. In Section 2, the notion of the scattering parame-
ter is introduced, a bistatic measurement configuration is illustrated, and the sampling-type
imaging algorithm is sketched. In Section 3, we establish a mathematical theory to demon-
strate that the localization of objective is dependent on the total number of measurement
data, antenna arrangement, and bistatic angle. In Section 4, numerical results are shown
to demonstrate the pros and cons of the designed algorithm. Section 5 contains a short
conclusion and perspectives.

2. Overview of Scattering Parameter and Design of Imaging Function

Assume that a small objective Σ is located in a two-dimensional homogeneous region.
For the sake, we set Σ as a circle of radius α with location robj and is enclosed by N antennas
to transmit and receive signals with location am, m = 1, 2, · · · , M, on a circle of radius R.
Let Ω ⊂ R2 be the region of interest (ROI) such that am is located at the exterior of Ω.

In this study, every material is characterized by its permittivity and conductivity at
a given angular frequency ω = 2π f . So, for every r ∈ Ω, we set the permeability as a
constant µ(r) = µb. We denote εobj and εb as the permittivity of Σ and Ω, respectively,
and assume that εb � σb/ω. Furthermore, the conductivities σobj and σb can be defined
analogously. With this, we define the following piecewise permittivity and conductivity as
ε(r) and σ(r), respectively, such that

ε(r) =
{

εobj for r ∈ Σ,
εb for r ∈ Ω\Σ,

and σ(r) =
{

σobj for r ∈ Σ,
σb for r ∈ Ω\Σ,

With this, we introduce the background wavenumber k that satisfies k2 = ω2µbεb +
iωµbσb.

Let ∆S(m′, m) be the scattered field S-parameter introduced in [7] that is given by

∆S(m′, m) =
ik2

4ωµb

∫
Ω

(
ε(r)− εb

εb
+ i

σ(r)− σb
ωεb

)
Einc(am, r)Etot(r, am′)dr, (1)

where Einc(am, r) and Etot(r, am′) are the z-component of the incident field Einc(am, r) and
the total field Etot(r, an), respectively. Notice that from the Maxwell equation, Einc(am, r)
and Etot(r, an) satisfy

∇× Einc(am, r) = −iωµbHtot(am, r) and ∇×Hinc(am, r) = (σb + iωεb)Einc(am, r),

and

∇×Etot(r, am′) = −iωµbHtot(r, am′) and ∇×Htot(r, am′) = (σ(r)+ iωε(r))Etot(r, am′),

respectively. Here, we assume a time-harmonic dependence eiωt, and H denotes the
magnetic field.

Unfortunately, we cannot design an imaging function because the closed form of the
Etot in (1) is still unknown. Notice that to use the closed form, one must know complete
information of Σ. Instead, we assume that the value of α satisfies(√

εobj

εb
− 1
)

α <
λ

4
.
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Then, applying Born approximation (see based on [42]) and reciprocity property of
the incident field, we can obtain the following approximation for ∆S(m′, m)

∆S(m′, m) ≈ ik2α2π

4ωµb

(
εobj − εb

εb
+ i

σobj − σb

ωεb

)
Einc(am, robj)Einc(am′ , robj). (2)

Now, let us design a sampling-type imaging function. For this, let us consider the
following arrangement of M-different measurement data:

V(n)
meas =

(
∆S(ψ1, 1), ∆S(ψ2, 2), · · · , ∆S(ψM, M)

)
,

where ψm = m′ = (m + n − 1 (mod M)) + 1, am = R(cos θm, sin θm), am′ = R(cos θm′ ,
sin θm′), and θm′ = θm + β. Here, β denotes the bistatic angle; refer to Figure 1 for an
illustration.

a1
a2

a15

a16

am

am

am′

am′

β

(a)

a1
a2

a15

a16

am

am

am′

am′
β

(b)

Figure 1. Illustration of bistatic measurement configuration. (a) n = 4 case, (b) n = 6 case.

Based on the structure of ∆S(m′, m) of (2), the arrangement V(n)
meas can be written as

V(n)
meas ≈

ik2α2π

4ωµb

(
εobj − εb

εb
+ i

σobj − σb

ωεb

)(
Einc(a1, robj)Einc(aψ1 , robj),

Einc(a2, robj)Einc(aψ2 , robj), · · · , Einc(aM, robj)Einc(aψM , robj)
)

.

Based on this observation, we test the orthogonality relation between ∆S(m′, m) and
Einc(am, robj)Einc(am′ , robj) on the Hilbert space `2 to extract robj from the arrangement

V(n)
meas. To this end, we introduce the following vector for r ∈ Ω,

Vtest(r) =
(

Einc(a1, r)Einc(aψ1 , r), Einc(a2, r)Einc(aψ2 , r), · · · , Einc(aM, r)Einc(aψM , r)
)

.

Then, based on the property of inner (or dot) product on `2−space, we can exam-
ine that ∣∣∣∣∣

〈
V(n)

meas

|V(n)
meas|

,
Vtest(r)
|Vtest(r)|

〉
`2

∣∣∣∣∣ =
{

1 if r = robj

between 0 and 1 if r 6= robj,

where the inner product 〈·, ·〉`2 is defined as 〈A, B〉`2 = A · B.
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Based on this observation, the following imaging function can be introduced:

FBS(r, n) =
|V(n)

meas ·Vtest(r)|
‖V(n)

meas‖‖Vtest(r)‖
=

|Φ(r)|
max
r∈Ω
|Φ(r)| , (3)

where

Φ(r) =
M

∑
m=1

∆S(m′, m)Einc(am, r)Einc(am′ , r).

Then, FBS(r, n) ≈ 1 when r ≈ robj ∈ Σ and 0 ≤ FBS(r, n) < 1 when r /∈ Σ. Therefore,
it is possible to identify robj through the map of FBS(r, n).

3. Analysis of Imaging Function and Some Properties

Based on the designed imaging function (3) in the previous Section, we expect to
successfully identify an objective. However, the identification performance is significantly
dependent on the bistatic angle or equivalently n. To explain such a phenomenon and select
an optimal value n, we establish a reliable mathematical theory for the imaging function.
To this end, we derive the following result.

Theorem 1. Let robj − r = |robj − r|(cos φobj, sin φobj), θm = am/|am| = (cos θm, sin θm),
and θm′ = θm + β. Then for each r ∈ Ω that satisfies |am − r| � (4|k|)−1, m = 1, 2, · · · , M,
FBS(r, n) can be represented as follows:

FBS(r, n) =
|Ψ(r)|

max
r∈Ω
|Ψ(r)| , (4)

where

Ψ(r) = J0(k(1 + cos β)|robj − r|)J0(k sin β|robj − r|)

+
1
M

M

∑
m=1

(
(Λ2 + Λ3)J0(k(1+ cos β)|robj− r|) + Λ1 J0(k sin β|robj− r|) + Λ1(Λ2 + Λ3)

)
.

Here, Js denotes the Bessel function of order s and

Λ1 = 2
∞

∑
s=1

is Js(k(1 + cos β)|robj − r|) cos
(
s(θm − φobj)

)
,

Λ2 = 2
∞

∑
s=1

J2s(k sin β|robj − r|) cos
(
2s(θm − φobj)

)
,

Λ3 = −2i
∞

∑
s=0

J2s+1(k sin β|robj − r|) sin
(
(2s + 1)(θm − φobj)

)
.

Proof. Since |am − r| � (4|k|)−1 for m = 1, 2, · · · , M, we can examine that (see [43]
for instance)

Einc(am, r) =
i
4

H(2)
0 (k|am − r|) ≈ (−1 + i)e−ikR

4
√

kπR
eikθm ·r.

Then, Φ(r) defined in (3) becomes

Φ(r) =
M

∑
m=1

∆S(m′, m)Einc(am, r)Einc(am′ , r) =
iα2O(robj)

256πR2

M

∑
m=1

eikθm ·(robj−r)eikθm′ ·(robj−r).
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Since θm′ = θm + β, we have

(cos θm + cos(θm + β), sin θm + sin(θm + β)) · (cos φobj, sin φobj)

= (cos θm + cos θm cos β− sin θm sin β, sin θm + sin θm cos β + cos θm sin β)

· (cos φobj, sin φobj)

= (1 + cos β) cos θm cos φobj − sin β sin θm cos ξ + (1 + cos β) sin θm sin φobj

+ sin β cos θm sin φobj

= (1 + cos β) cos(θm − φobj)− sin β sin(θm − φobj)

and correspondingly,

(θm + θm′) · (robj − r) = |robj − r|
(
(1 + cos β) cos(θm − φobj)− sin β sin(θm − φobj)

)
.

Thus, Φ(r) becomes

Φ(r) =
iα2O(robj)

256πR2

M

∑
m=1

eik|robj−r|[(1+cos β) cos(θm−φobj)−sin β sin(θm−φobj)]. (5)

Now, let us recall the following Jacobianger expansion formulas:

eix cos θ = J0(x) + 2
∞

∑
s=1

is Js(x) cos(sθ),

e−ix sin θ = J0(x) + 2
∞

∑
s=1

J2s(x) cos(2sθ)− 2i
∞

∑
s=0

J2s+1(x) sin
(
(2s + 1)θ

)
.

(6)

Then, since

eik|robj−r|(1+cos β) cos(θm−φobj) = J0(k(1 + cos β)|robj − r|)

+ 2
∞

∑
s=1

is Js(k(1 + cos β)|robj − r|) cos
(
s(θm − φobj)

)
(7)

and

e−ik|robj−r| sin β sin(θm−φobj) =J0(k sin β|robj − r|)

+ 2
∞

∑
s=1

J2s(k sin β|robj − r|) cos
(
2s(θm − φobj)

)
− 2i

∞

∑
s=0

J2s+1(k sin β|robj − r|) sin
(
(2s + 1)(θm − φobj)

)
,

(8)

we can immediately obtain structure (4) by plugging (7) and (8) into (5).

Based on the Theorem 1, we can explore some properties of the FBS(r, n).

Property 1 (Role of the factors). Since J0(0) = 1 and Js(0) = 0 for s = 1, 2, · · · , the terms
J0(k(1 + cos β)|robj − r|) and J0(k sin β|robj − r|) contribute to identifying the objective location.
On the other side, since the terms Λl , l = 1, 2, 3 satisfy

lim
r→robj

Λl = 0,

they do not contribute to localizing the objective. Moreover, due to the oscillating pattern of Bessel
functions, the map of FBS(r, n) contains several artifacts.
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Property 2 (Dependency on the bistatic angle). Since the factors J0(k(1+ cos β)|robj− r|) and
J0(k sin β|robj− r|) that contribute to the identification are dependent on the value of β, the imaging
result is considerably dependent on the bistatic angle. Therefore, the optimal number/configuration
of antennas and selection of bistatic angle depend on the size and material property (contrast of
permittivity/conductivity) of the objective; refer to Examples 1 and 2.

1. If β = 0 then since J0(k sin β|robj − r|) ≡ 1, Λ2 ≡ 0, and Λ3 ≡ 0,

FBS(r, n) = J0(2k|robj − r|) + 2
M

M

∑
m=1

∞

∑
s=1

is Js(2k|robj − r|) cos
(
s(θm − φobj)

)
. (9)

This is the generalized version of the structure derived in [28].
2. If β = π, then since J0(k(1 + cos β)|robj − r|) ≡ 1 and J0(k sin β|robj − r|) ≡ 1, these

terms do not contribute to determining robj, i.e., it is impossible to recognize the objective
location through the map of FBS(r, n).

Property 3 (Total number of measurement data). Since Ψ(r) can be written in the follow-
ing form

Ψ(r) = J0(k(1 + cos β)|robj − r|)J0(k sin β|robj − r|) + 1
M

M

∑
m=1
E(robj),

where

E(robj) = (Λ2 + Λ3)J0(k(1 + cos β)|robj − r|) + Λ1 J0(k sin β|robj − r|) + Λ1(Λ2 + Λ3).

As we already examined in Property 1, the factor E(robj) disturbs the identification so that
eliminating this factor is equivalent to the improvement of imaging performance. Unfortunately,
we have no a priori objective information, so it is challenging to remove it. Instead, by increasing
the total number M, the effect of E(robj) is negligible. This is the theoretical reason why sufficient
measurement data guarantees imaging performance.

Property 4 (Antenna arrangement). Based on the discovered structure, eliminating the terms
Λl/M, l = 1, 2, 3 leads us to obtain a good result. One scenario is to increase the total number
of measurement data M, but this setting seems ideal. Another possible scenario is to arrange
the antenna to make Λl = 0 for all l = 1, 2, 3. Based on observation [44], if one selects the 16
uniformly distributed antennas in Figure 1, the terms Λl can be removed so that FBS(r, n) defined
in (4) becomes

FBS(r, n) = J0(k(1 + cos β)|robj − r|)J0(k sin β|robj − r|).

4. Simulation Results

Here, we exhibit simulation results to examine the applicability and limitation of the
designed imaging algorithm, and to support the theoretical result. To this end, M = 16
dipole antennas am were arranged uniformly on a circle of radius R = 90 mm centered at
the origin such that (see Figure 1 for illustration)

am = 90 mm(cos θm, sin θm), θm = −90° + (m− 1) · 22.5°.

For the background material properties, we set εb = 20ε0 and σb = 0.2 S/m at a
frequency of f = 1 GHz, where ε0 denotes the vacuum permittivity. With this setting,
the measurement data ∆S(m′, m) and the incident field data Einc(am, r) were generated
using the CST STUDIO SUITE.

Example 1 (Imaging of a small objective). Figure 2 shows maps of FBS(r, n) for various n
in the presence of Σ1 with location r1 = (10 mm, 30 mm), radius α1 = 10 mm, permittivity
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ε1 = 55ε0, and conductivity σ1 = 1.2 S/m. Based on the outcome, superior imaging results were
obtained when n = 3, 4, 5, 6, 7, i.e., 67.5° ≤ β ≤ 157.5°, but the result was poor when n = 1, 2,
i.e., 22.5° ≤ β ≤ 50° due to the appearance of several artifacts. Consequently, the sampling-type
imaging is effective for identifying small objectives but the imaging performance is significantly
dependent on the selection of the bistatic angle, as we discussed in Property 2. Notice that when
n = 8, i.e., β = 180°, it is impossible to identify r1 ∈ Σ1, consistent with the result in Theorem 1.
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Figure 2. (Example 1) Maps of FBS(r, n). Black-colored dashed line describes the boundary of ob-
jective. (a) Small objective, (b) n = 1, (c) n = 2, (d) n = 3, (e) n = 4, (f) n = 5, (g) n = 6, (h) n = 7,
(i) n = 8.

Example 2 (Imaging of two small objectives). Figure 3 shows maps of FBS(r, n) for various n in
the presence of Σ1 and Σ2. The configurations of Σ1 are the same as in Example 1, and configurations
of Σ2 are the same as Σ1 except the location r2 = (−40 mm,−20 mm). Opposite of the result in
Example 1, the locations of r1 and r2 can be identified accurately only when n = 5, i.e., β = 112.5°.
If n = 4 or n = 6, it is possible to recognize Σ1 and Σ2, but the identified locations are inaccurate
compared to the true locations. Similar to Example 1, it is challenging to recognize the objectives
when n = 1, 2, 7 and it is still impossible to identify them when n = 8.

Figure 4 presents maps of FBS(r, n) for various n in the presence of two small objectives: Σ1
and Σ2. The configurations of Σ1 and Σ2 are the same, except for the permittivity ε2 = 45ε0 and
conductivity σ2 = 1.0 S/m. The results are very similar to the ones in Figure 3. Therefore, we can
conclude that the imaging performance is significantly dependent on the selection of the bistatic
angle. However, opposite to the single objective imaging, the proposed sampling algorithm must be
improved for the proper identification.
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Figure 3. (Example 2) Maps of FBS(r, n). Black-colored dashed lines describe the boundaries of ob-
jectives. (a) Small objective, (b) n = 1, (c) n = 2, (d) n = 3, (e) n = 4, (f) n = 5, (g) n = 6, (h) n = 7,
(i) n = 8.

Example 3 (Imaging of a large objective). Here, we consider the identification of a large objective
designed as a single disk circle Σ located at r = (10 mm, 20 mm), with radius α = 50 mm,
permittivity ε1 = 15ε0, and conductivity σ1 = 0.5 S/m. Unlike the case of small objectives, both
the shape and size of the objective cannot be identified, and only the center can be recognized, refer
to Figure 5. Therefore, we conclude that the designed algorithm cannot be applied directly for
identifying large objectives so that the investigation of an improved imaging function is required.

Example 4 (Imaging in the monostatic measurement configuration). Here, we exhibit the
imaging result with scattering parameter data with monostatic measurement configuration and
compare the imaging performance with bistatic measurement configuration. Figure 6 shows maps of
FBS(r, 0) for single (in Example 1), multiple (in Example 2), and large (in Example 3) objectives.
Unlike the result in [28], the location of any objectives cannot be identified via the map of FBS(r, 0)
because, as we already mentioned in Section 1, it is very difficult to extract the weak scattered signal
from the relatively high antenna reflection. Hence, at this stage, we can say that direct application of
the traditional monostatic imaging technique is not appropriate to identify unknown objectives.
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Figure 4. (Example 2) Maps of FBS(r, n). Black-colored dashed lines describe the boundaries of ob-
jectives. (a) Small objective, (b) n = 1, (c) n = 2, (d) n = 3, (e) n = 4, (f) n = 5, (g) n = 6, (h) n = 7,
(i) n = 8.

Example 5 (Imaging of a small objective with small number of measurement data). At this
moment, we examine the influence of the total number of measurement data M. To this end, we
exhibit simulation results for single objective Σ1 from Example 1 with datasets Ds, s = 1, 2, 3, such
that

D1 = {∆S(1, 5), ∆S(5, 9), ∆S(9, 13), ∆S(13, 1)}
D2 = {∆S(1, 5), ∆S(4, 8), ∆S(7, 11), ∆S(10, 14), ∆S(13, 1), ∆S(16, 4)}
D3 = {∆S(1, 5), ∆S(3, 7), ∆S(5, 9), · · · , ∆S(11, 15), ∆S(13, 1), ∆S(15, 3)}.

Based on the results in Figure 7, it is very hard to recognize the existence of Σ1 due to the
several artifacts. Therefore, to retrieve the location of Σ1 through the FBS(r, n), the total number M
must be large enough.

Example 6 (Comparison with direct sampling method). For the final example, we apply the
direct sampling method (DSM) and compare the imaging performance. Figure 8 shows the imaging
results in the presence of Σ1 from Example 1 through the DSM with location of sources a5, a10,
and a15. Notice that the imaging performance of the DSM is significantly dependent on the location
of the source and objective. However, as we have no information of the objective, selecting an optimal
location of source is impossible. On the other hand, based on Example 1, the imaging performance of
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FBS(r, n) is dependent only on the selection of the bistatic angle, regardless of the location of the
small objective.
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Figure 5. (Example 3) Maps of FBS(r, n). Black-colored dashed line describes the boundary of objective.
(a) Large objective, (b) n = 1, (c) n = 2, (d) n = 3, (e) n = 4, (f) n = 5, (g) n = 6, (h) n = 7, (i) n = 8.
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Figure 6. (Example 4) Maps of FBS(r, 0). Black-colored dashed line describes the boundaries of objec-
tives. (a) Small objective (Example 1), (b) Small objectives (Example 2), (c) Large objective (Example 3).
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Figure 7. (Example 5) Maps of FBS(r, n) with datasets Ds, s = 1, 2, 3. Black-colored dashed line
describes the boundary of objective. (a) With dataset D1, (b) With dataset D2, (c) With dataset D3.
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Figure 8. (Example 6) Imaging results via the direct sampling method with difference location of
sources a5, a10, and a15. Black-colored dashed line describes the boundaries of objectives. (a) Imaging
with source a5, (b) Imaging with source a10, (c) Imaging with source a15.

5. Conclusions

In this paper, a sampling-type imaging algorithm is considered for the fast identifica-
tion of small objectives in the bistatic measurement configuration. Thanks to the integral
equation formula for the scattered field S-parameter, an imaging function is designed, and
its mathematical structure is proven. Based on the established structure, it is confirmed
that the imaging performance is highly dependent on the bistatic angle.

Although the designed imaging technique is applicable for identifying small objectives,
it is unsuitable for identifying multiple small objectives or a large objective. The enhance-
ment of imaging performance is an interesting future research subject. Finally, there exist
various millimeter wave (mmWave) imaging techniques [45,46]. We believe that investiga-
tion of an effective mmWave imaging technique in the bistatic measurement configuration
will be a remarkable research topic.

Author Contributions: S.-H.S. contributed in methodology, software, validation, and writing—
reviewing and editing, and funding acquisition. W.-K.P. contributed in conceptualization, methodol-
ogy, software, formal analysis, investigation, writing—reviewing and editing, funding acquisition.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2020R1A2C1A01005221), the research program
of Kookmin University, and the Soonchunhyang University Research Fund.

Acknowledgments: The authors would also like to acknowledge two anonymous reviewers for their
valuable comments that helped to increase the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2022, 11, 3054 12 of 13

References
1. Arridge, S. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41–R93. [CrossRef]
2. Simonov, N.; Kim, B.R.; Lee, K.J.; Jeon, S.I.; Son, S.H. Advanced fast 3-D electromagnetic solver for microwave tomography

imaging. IEEE Trans. Med. Imaging 2017, 36, 2160–2170. [CrossRef] [PubMed]
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