Research on the Identification Method of Overhead Transmission Line Breeze Vibration Broken Strands Based on VMD−SSA−SVM
Abstract
:1. Introduction
2. Principle Related to Overhead Line Broken Strand Identification Model
2.1. Variational Modal Decomposition (VMD)
2.2. Hilbert−Huang Transform−Marginal Spektrum
2.3. Sparrow Search Algorithm (SSA)
2.4. Support Vector Machine Classification Principle (SVM)
3. VMD−SSA−SVM Identification Model
4. Dynamics Simulation of Overhead Transmission Lines
5. Results and Analysis
5.1. VMD Decomposition Spurious Component Determination and Signal Reconstruction
5.2. VMD Decomposition of Reconstructed Signals with HHT Transform
5.3. VMD-SSA-SVM Model Identification Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- (1)
- Initialize , and let ;
- (2)
- Iteratively update , and :
- (3)
- The size of the judgment accuracy in Equation (6) is used to decide whether the iteration is stopped or not, so that the optimal each mode component and the central frequency are derived.
- (4)
- Outputs the K modal components and its corresponding center frequency values.
References
- Shi, L.; Yang, H.; Xu, L.; Yang, Y.; Wang, D.; Long, X.; Zhao, J. Fast detection method of transmission line defects and faults based on airborne laser LiDAR. J. Physics Conf. Ser. 2021, 2005, 12240. [Google Scholar]
- Ma, X.; Gao, L.; Zhang, J.; Zhang, L.-C. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR) Conductors in High-Voltage Transmission Line. Metals 2017, 7, 373. [Google Scholar] [CrossRef]
- Miu, Z.; Wu, N.; Yao, J.; Ke, X.; Liu, P.; Bie, S. Fault Diagnosis of Transmission Lines Based on High Frequency Electromagnetic Spectrum Distribution Characteristics. J. Phys. Conf. Ser. 2022, 2166, 12017. [Google Scholar] [CrossRef]
- Liao, C.; Yi, Y.; Chen, T.; Cai, C.; Deng, Z.; Song, X.; Lv, C. Detecting Broken Strands in Transmission Lines Based on Pulsed Eddy Current. Metals 2022, 12, 1014. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Jeong, S.; Ham, J.-W.; Son, S.; Oh, K.-Y. Damage Detection with an Ultrasound Array and Deep Convolutional Neural Network Fusion. IEEE Access 2020, 8, 189423–189435. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.; Jia, J.; Liu, X. A Recognition Technology of Transmission Lines Conductor Break and Surface Damage Based on Aerial Image. IEEE Access 2019, 7, 59022–59036. [Google Scholar] [CrossRef]
- Cao, G.; Liu, Y.; Fan, Z.; Chen, L.; Mei, H.; Zhang, S.; Wang, J.; Han, X. Research on Small-scale Defect Identification and Detection of Smart Grid Transmission Lines Based on Image Recognition. In Proceedings of the 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 19–21 November 2021; pp. 423–427. [Google Scholar]
- Zhou, Y.; Sun, H.; Liu, C.; Zhang, J.; Zhu, Z.; Tang, B. Automatic Recognition Method of Broken Transmission Line Defect Image Based on Deep Transfer Learning. J. Phys. Conf. Ser. 2022, 2189, 12002. [Google Scholar] [CrossRef]
- Redford, J.; Gueguin, M.; Nguyen, M.; Lieurade, H.-P.; Yang, C.; Hafid, F.; Ghidaglia, J.-M. Calibration of a numerical prediction methodology for fretting-fatigue crack initiation in overhead power lines. Int. J. Fatigue 2019, 124, 400–410. [Google Scholar] [CrossRef]
- Liu, J.; Yan, B.; Mou, Z.; Gao, Y.; Niu, G.; Li, X. Numerical study of aeolian vibration characteristics and fatigue life estimation of transmission conductors. PLoS ONE 2022, 17, e0263163. [Google Scholar] [CrossRef]
- Altunışık, A.C.; Okur, F.Y.; Kahya, V. Modal parameter identification and vibration based damage detection of a multiple cracked cantilever beam. Eng. Fail. Anal. 2017, 79, 154–170. [Google Scholar] [CrossRef]
- Hou, J.; Xu, D.; Jankowski, Ł.; Liu, Y.; Monitoring, H. Constrained mode decomposition method for modal parameter identification. Struct. Control Health Monit. 2022, 29, e2878. [Google Scholar] [CrossRef]
- Wei, B.; Xie, B.; Li, H.; Zhong, Z.; You, Y. An improved Hilbert–Huang transform method for modal parameter identification of a high arch dam. Appl. Math. Model. 2021, 91, 297–310. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, X.; Jia, J.; Zhu, Y.; Cao, W. Detection of Broken Strands of Transmission Line Conductors Using Fiber Bragg Grating Sensors. Sensors 2018, 18, 2397. [Google Scholar] [CrossRef] [PubMed]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Processing 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Cui, Z.; Shen, J. Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy. Energy 2019, 174, 1100–1109. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.-L.; Li, G.-H.; Guan, Q.-R. A novel feature extraction method for ship-radiated noise. Def. Technol. 2022, 18, 604–617. [Google Scholar] [CrossRef]
- Feng, G.; Wei, H.; Qi, T.; Pei, X.; Wang, H. A transient electromagnetic signal denoising method based on an improved variational mode decomposition algorithm. Measurement 2021, 184, 109815. [Google Scholar] [CrossRef]
- Ceperic, E.; Ceperic, V.; Baric, A. A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines. IEEE Trans. Power Syst. 2013, 28, 4356–4364. [Google Scholar] [CrossRef]
- Tang, H.; Yuan, Z.; Dai, H.; Du, Y. Fault Diagnosis of Rolling Bearing Based on Probability box Theory and GA-SVM. IEEE Access 2020, 8, 170872–170882. [Google Scholar] [CrossRef]
- Cuong-Le, T.; Nghia-Nguyen, T.; Khatir, S.; Trong-Nguyen, P.; Mirjalili, S.; Nguyen, K.D. An efficient approach for damage identification based on improved machine learning using PSO-SVM. Eng. Comput. 2021, 38, 3069–3084. [Google Scholar] [CrossRef]
- Li, X.; Fu, L. Rolling bearing fault diagnosis based on MEEMD sample entropy and SSA-SVM. J. Phys. Conf. Ser. 2021, 2125, 12003. [Google Scholar] [CrossRef]
- Qu, J.; Ma, B.; Ma, X.; Wang, M. Hybrid Fault Diagnosis Method based on Wavelet Packet Energy Spectrum and SSA-SVM. Int. J. Adv. Comput. Sci. Appl. 2022, 13. [Google Scholar] [CrossRef]
- Monroe, R.A.; Templin, R.L. Vibration of overhead transmission lines. Electr. Eng. 1932, 51, 413. [Google Scholar] [CrossRef]
- Gomes, F.B. Análise Comparativa de Aparelhos Para Medição de Vibração em Cabos Condutores de Energia e Cálculo da Vida Remanescente em Cabos. Bachelor’s Thesis, Universidade de Brasília, Brasília, Brazil, 2015. [Google Scholar]
- Chen, G.; Yan, C.; Meng, J.; Wang, H.; Wu, L. Improved VMD-FRFT based on initial center frequency for early fault diagnosis of rolling element bearing. Meas. Sci. Technol. 2021, 32, 115024. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Transmission line broken strands identification method based on damage detection theory | Higher accuracy rate | Needs to be paired with a patrol robot for inspection, which is expensive, less efficient, and has high requirements for sensor locations |
Broken strand recognition method based on image recognition theory | Convenience and security | Need to match the drone for image acquisition, and the recognition of overhead transmission line surface dirt is poor |
Fatigue life prediction | The service life of overhead transmission lines is predictable and can be replaced before a fault occurs. | Low prediction accuracy |
Number of Modes | Center Frequency(Hz) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | IMF10 | IMF11 | IMF12 | |
8 | 252.4 | 194.7 | 141.7 | 97.6 | 75.6 | 54.8 | 27.9 | 5.2 | - | - | - | - |
9 | 257.1 | 201.6 | 158.7 | 124.1 | 97.5 | 75.6 | 54.8 | 27.8 | 5.2 | - | - | - |
10 | 257.5 | 202.3 | 159.7 | 125.3 | 97.5 | 75.7 | 56.5 | 39.6 | 23.3 | 2.7 | - | - |
11 | 297.4 | 235.2 | 194.3 | 155.3 | 121.8 | 97.1 | 96.5 | 74.2 | 43.2 | 23.9 | 3.3 | - |
12 | 302.4 | 242.0 | 204.5 | 178.6 | 148.9 | 119.8 | 97.1 | 96.5 | 74.2 | 43.1 | 23.8 | 3.3 |
Modal Orders | Normal Operating Condition | Relative Error (%) | Break 5 Shares Running Status | Relative Error (%) | ||
---|---|---|---|---|---|---|
VMD−HHT Method (Hz) | Finite Element Simulation (Hz) | VMD−HHT Method (Hz) | Finite Element Simulation (Hz) | |||
1 | 12 | 12.1 | 0.83% | 12 | 12.1 | 0.83% |
2 | 25.1 | 25.1 | 0% | 24.8 | 24.9 | 0.4% |
3 | 39.6 | 39.7 | 0.25% | 39.1 | 39.2 | 0.26% |
4 | 56.4 | 56.6 | 0.35% | 55.4 | 55.5 | 0.18% |
5 | 75.6 | 76.0 | 0.53% | 73.8 | 74.2 | 0.54% |
6 | 97.6 | 98.4 | 0.81% | 94.9 | 95.6 | 0.73% |
Method | Accuracy | Running Time (s) |
---|---|---|
VMD−SSA−SVM | 99.333% | 2.835 |
VMD−GA−SVM | 98.667% | 6.128 |
VMD−PSO−SVM | 97.333% | 2.171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, S.; Li, J.; Wu, J.; Zhong, J.; Liao, H. Research on the Identification Method of Overhead Transmission Line Breeze Vibration Broken Strands Based on VMD−SSA−SVM. Electronics 2022, 11, 3028. https://doi.org/10.3390/electronics11193028
Wang C, Wang S, Li J, Wu J, Zhong J, Liao H. Research on the Identification Method of Overhead Transmission Line Breeze Vibration Broken Strands Based on VMD−SSA−SVM. Electronics. 2022; 11(19):3028. https://doi.org/10.3390/electronics11193028
Chicago/Turabian StyleWang, Cheng, Shufan Wang, Jiajun Li, Jianjun Wu, Jianwei Zhong, and Honghua Liao. 2022. "Research on the Identification Method of Overhead Transmission Line Breeze Vibration Broken Strands Based on VMD−SSA−SVM" Electronics 11, no. 19: 3028. https://doi.org/10.3390/electronics11193028
APA StyleWang, C., Wang, S., Li, J., Wu, J., Zhong, J., & Liao, H. (2022). Research on the Identification Method of Overhead Transmission Line Breeze Vibration Broken Strands Based on VMD−SSA−SVM. Electronics, 11(19), 3028. https://doi.org/10.3390/electronics11193028