Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review
Abstract
:1. Introduction
2. Research Methodology
2.1. Research Design
2.1.1. Literature Review Questions
- RQ1
- What types of neural networks can be applied to the design of microwave devices?
- RQ2
- What are the applicable transition algorithms from full-wave methods to the neural networks methods?
- RQ3
- What are the applications and direction in microwave design using machine learning?
2.1.2. Research Process
2.1.3. Search Terms
- “Artificial neural network microwave devices" OR "computer based modelling microwave devices”;
- “Design microwave devices”;
- “Modeling microwave devices”;
- “Application microwave devices”;
- “Synthesis microwave devices”;
- “Microwave devices”.
2.2. Review Conduction
2.2.1. Selection of Relevant Papers
- Use the provided terms to search the database and locate prior works linked to the research.
- Ignore documents that do not meet the supplied search parameters.
- Exclude papers with no evident link between title and abstract.
- Read the articles in their entirety before evaluating them.
- Assess the bibliography.
- Perform the preliminary research.
2.2.2. Inclusion and Exclusion Criteria
2.2.3. Data Extraction
3. Transition from Full-Wave Methods to the Neural Networks Based Methods
4. Different Fields of Usage
4.1. Antennas
4.2. Antennas Arrays
4.3. Phase Shifters
4.4. Other Applications
5. Neural Networks Classification According to the Learning Type
6. Fuzzy Logic
7. Discussion and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, S.; Lu, R.; Yang, Y.; Gao, L.; Hassanien, A.E. Microwave Acoustic Devices: Recent Advances and Outlook. IEEE J. Microw. 2021, 1, 601–609. [Google Scholar] [CrossRef]
- Aslan, Y.; Roederer, A.; Fonseca, N.J.G.; Angeletti, P.; Yarovoy, A. Orthogonal Versus Zero-Forced Beamforming in Multibeam Antenna Systems: Review and Challenges for Future Wireless Networks. IEEE J. Microw. 2021, 1, 879–901. [Google Scholar] [CrossRef]
- Alahnomi, R.A.; Zakaria, Z.; Yussof, Z.M.; Althuwayb, A.A.; Alhegazi, A.; Alsariera, H.; Rahman, N.A. Review of Recent Microwave Planar Resonator-Based Sensors: Techniques of Complex Permittivity Extraction, Applications, Open Challenges and Future Research Directions. Sensors 2021, 21, 2267. [Google Scholar] [CrossRef] [PubMed]
- Smyth, B.P.; Iyer, A.K. Embedded MTM-EBGs in Patch Antenna for Simultaneously Dual-Band and Dual-Polarized Operation. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ibrahim, M.Y.; Ashyap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H. Implementation of Electromagnetic Band-Gap Structure in Antenna Applications: An Overview. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia, 27–29 September 2020; pp. 33–38. [Google Scholar] [CrossRef]
- Kiani, S.H.; Altaf, A.; Abdullah, M.; Muhammad, F.; Shoaib, N.; Anjum, M.R.; Damaševičius, R.; Blažauskas, T. Eight element side edged framed MIMO antenna array for future 5G smart phones. Micromachines 2020, 11, 956. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.S.; Aziz, M.Z.A.A.; Abdullah, N.B. Microstrip Antenna Array with Defected Ground Structure and Copper Tracks for Bandwidth Enhancement. In Proceedings of the 2020 IEEE International RF and Microwave Conference (RFM), Kuala Lumpur, Malaysia, 14–16 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Abohmra, A.; Abbas, H.; Al-Hasan, M.; Mabrouk, I.B.; Alomainy, A.; Imran, M.A.; Abbasi, Q.H. Terahertz Antenna Array Based on a Hybrid Perovskite Structure. IEEE Open J. Antennas Propag. 2020, 1, 464–471. [Google Scholar] [CrossRef]
- Yildiz, Ö.F.; Thomsen, O.; Bochard, M.; Yang, C.; Schuster, C. Vertically Integrated Microwave-Filters Using Functional Via Structures in LTCC. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; pp. 966–969. [Google Scholar] [CrossRef]
- Fu, W.; Li, Z.M.; Chcng, J.W.; Qiu, X. A Review of Microwave Filter Designs based on CMRC. In Proceedings of the 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 20–23 September 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Geyikoglu, M.D.; Koc Polat, H.; Cavusoglu, B. Novel Design for Differential Phaseshifter Structure by Using Multi-Section coupled Lines. Electron. Lett. 2020, 56, 553–556. [Google Scholar] [CrossRef]
- Shao, C.; Chu, H.; Zhu, X.H. Continuously Tunable Phase Shifter Based on Defected Ground Structures. In Proceedings of the 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 29–31 July 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Abbasi, Z.; Baghelani, M.; Daneshmand, M. High-Resolution Chipless Tag RF Sensor. IEEE Trans. Microw. Theory Tech. 2020, 68, 4855–4864. [Google Scholar] [CrossRef]
- Atkishkin, S. Flexible 3D Slabline and Stripline Microwave Delay Lines on Polymer Substrate. In Proceedings of the 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE), Saratov, Russia, 24–25 September 2020; pp. 129–133. [Google Scholar] [CrossRef]
- Tao, T.; Yang, J.; Wei, W.; Woźniak, M.; Scherer, R.; Damaševičius, R. Design of a MEMS sensor array for dam subsidence monitoring based on dual-sensor cooperative measurements. KSII Trans. Internet Inf. Syst. 2021, 15, 3554–3570. [Google Scholar]
- He, X.; Kong, L.; Zhang, Y. Modelling of Tunable CPW Structure Dielectric Phase Shifters. In Proceedings of the 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 13–15 November 2020; pp. 368–371. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, Y.; Yu, C.; Zhang, W.; Liang, F.; Zhang, Z.; Gao, S.; Chen, J. Reconfigurable Microwave Phase Shifter Based on Nematic Liquid Crystal: Design and Experimental Validation. In Proceedings of the 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 13–15 November 2020; pp. 455–459. [Google Scholar] [CrossRef]
- Zhao, S.; Dong, Y. Circularly Polarized Patch Antenna with Miniaturized Quarter-Mode Slotted SIW Cavity. In Proceedings of the 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Piltyay, S.; Bulashenko, A.; Herhil, Y.; Bulashenko, O. FDTD and FEM Simulation of Microwave Waveguide Polarizers. In Proceedings of the 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 25–27 November 2020; pp. 357–363. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, G.; Wan, T.; Hu, Y. Numerical Simulation of Electromagnetic-Thermal Effect of Microwave Devices. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium—China (ACES), Nanjing, China, 8–11 August 2019; Volume 1, pp. 1–2. [Google Scholar] [CrossRef]
- Flynn, D.; Marpe, D.; Naccari, M.; Nguyen, T.; Rosewarne, C.; Sharman, K.; Sole, J.; Xu, J. Overview of the Range Extensions for the HEVC Standard: Tools, Profiles, and Performance. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 4–19. [Google Scholar] [CrossRef]
- Mejillones, S.C.; Oldoni, M.; Moscato, S.; Macchiarella, G. Analytical Synthesis of Fully Canonical Cascaded-Doublet Prototype Filters. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1017–1020. [Google Scholar] [CrossRef]
- Macchiarella, G.; Gentili, G.G.; Tomassoni, C.; Bastioli, S.; Snyder, R.V. Design of Waveguide Filters with Cascaded Singlets Through a Synthesis-Based Approach. IEEE Trans. Microw. Theory Tech. 2020, 68, 2308–2319. [Google Scholar] [CrossRef]
- Mokarram, A.; Abdipour, A.; Askarpour, A.N.; Mohammadzade, A.R. Time-Domain Signal and Noise Analysis of Millimetre-Wave/THz Diodes by Numerical Solution of Stochastic Telegrapher’s Equations. IET Microwaves Antennas Propag. 2020, 14, 1012–1020. [Google Scholar] [CrossRef]
- Staras, S.; Martavicius, R.; Skudutis, J.; Urbanavicius, V.; Daskevicius, V. Wide-Band Slow-Wave Systems: Simulation and Applications; CRC Press: Boca Raton, FL, USA, 2012; p. 460. [Google Scholar]
- Plonis, D.; Katkevičius, A.; Krukonis, A.; Šlegerytė, V.; Maskeliūnas, R.; Damaševičius, R. Predicting the Frequency Characteristics of Hybrid Meander Systems Using a Feed-Forward Backpropagation Network. Electronics 2019, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Marinkovic, Z.; Kim, T.; Marković, V.; Milijic, M.; Pronić-Rančić, O.; Ciric, T.; Vietzorreck, L. Artificial Neural Network based Design of RF MEMS Capacitive Shunt Switches. Appl. Comput. Electromagn. Soc. J. 2016, 31, 756–764. [Google Scholar]
- Travassos, X.L.; Avila, S.L.; Ida, N. Artificial Neural Networks and Machine Learning techniques applied to Ground Penetrating Radar: A review. Appl. Comput. Inform. 2021, 17, 296–308. [Google Scholar] [CrossRef]
- Kabir, H.; Zhang, L.; Yu, M.; Aaen, P.H.; Wood, J.; Zhang, Q.J. Smart Modeling of Microwave Devices. IEEE Microw. Mag. 2010, 11, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, S.; Ge, Y. A Survey on the Applications of Image Classification Based on Convolution Neural Network. In Proceedings of the 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2022; pp. 381–384. [Google Scholar] [CrossRef]
- Li, H.; Chen, K.; Wang, L.; Liu, J.; Wan, B.; Zhou, B. Sound Source Separation Mechanisms of Different Deep Networks Explained from the Perspective of Auditory Perception. Appl. Sci. 2022, 12, 832. [Google Scholar] [CrossRef]
- Khandelwal, R.; Marfatia, P.; Shah, S.; Joshi, V.; Kamath, P.; Chavan, K. Financial Data Time Series Forecasting Using Neural Networks and a Comparative Study. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 21–22 January 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Rusen, V.; Krukonis, A.; Plonis, D. Prediction of Parameters of Semiconductor Band-pass Filters using Artificial Neural Network. In Proceedings of the 2020 IEEE 8th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 22–24 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Zhao, Z.; Feng, F.; Zhang, W.; Zhang, J.; Jin, J.; Zhang, Q.J. Parametric Modeling of EM Behavior of Microwave Components Using Combined Neural Networks and Hybrid-Based Transfer Functions. IEEE Access 2020, 8, 93922–93938. [Google Scholar] [CrossRef]
- Plonis, D.; Katkevičius, A.; Gurskas, A.; Urbanavičius, V.; Maskeliūnas, R.; Damaševičius, R. Prediction of Meander Delay System Parameters for Internet-of-Things Devices Using Pareto-Optimal Artificial Neural Network and Multiple Linear Regression. IEEE Access 2020, 8, 39525–39535. [Google Scholar] [CrossRef]
- Tan, J.; Shao, Y.; Zhang, J.; Zhang, J. Artificial Neural Network Application in Prediction of Concrete Embedded Antenna Performance. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Cheng, Q.; Ihalage, A.A.; Liu, Y.; Hao, Y. Compressive Sensing Radar Imaging with Convolutional Neural Networks. IEEE Access 2020, 8, 212917–212926. [Google Scholar] [CrossRef]
- Ninomiya, H. A novel quasi-Newton-based optimization for neural network training incorporating Nesterov’s accelerated gradient. Nonlinear Theory Its Appl. IEICE 2017, 8, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, M.; Trinchero, R.; Firouzeh, Z.H.; Canavero, F.G. Compressed Machine Learning-Based Inverse Model for Design Optimization of Microwave Components. IEEE Trans. Microw. Theory Tech. 2022, 70, 3415–3427. [Google Scholar] [CrossRef]
- Wen, H.; Chen, X.; Papagiannis, G.; Hu, C.; Li, Y. End-to-End Semi-supervised Learning for Differentiable Particle Filters. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5825–5831. [Google Scholar] [CrossRef]
- Gama, F.; Zilberstein, N.; Baraniuk, R.G.; Segarra, S. Unrolling Particles: Unsupervised Learning of Sampling Distributions. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 5498–5502. [Google Scholar] [CrossRef]
- Qi, G.J.; Luo, J. Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2168–2187. [Google Scholar] [CrossRef] [PubMed]
- Famoriji, O.J.; Ogundepo, O.Y.; Qi, X. An Intelligent Deep Learning-Based Direction-of-Arrival Estimation Scheme Using Spherical Antenna Array with Unknown Mutual Coupling. IEEE Access 2020, 8, 179259–179271. [Google Scholar] [CrossRef]
- Jin, J.; Feng, F.; Zhang, J.; Yan, S.; Na, W.; Zhang, Q. A Novel Deep Neural Network Topology for Parametric Modeling of Passive Microwave Components. IEEE Access 2020, 8, 82273–82285. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Khorsan, R.; Crawford, C. External Validity and Model Validity: A Conceptual Approach for Systematic Review Methodology. Evid.-Based Complement. Altern. Med. 2014, 2014, 694804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Introduction to artificial neural networks. In Proceedings of the Proceedings Electronic Technology Directions to the Year 2000, Adelaide, Australia, 23–25 May 1995; pp. 36–62. [CrossRef] [Green Version]
- Zheng, N.; Mazumder, P. Fundamentals and Learning of Artificial Neural Networks. In Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 11–60. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Dujaili, A.; Duan, Y.; Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–10. [Google Scholar] [CrossRef]
- Katkevičius, A.; Mališauskas, V.; Plonis, D.; Serackis, A. Calculations of characteristics of microwave devices using artificial neural networks. Prz. Elektrotechniczny 2012, 88, 281–285. [Google Scholar]
- Fobar, D.; Phillips, L.; Wilhelm, A.; Chapman, P. Considerations for Training an Artificial Neural Network for Particle Type Identification. IEEE Trans. Nucl. Sci. 2021, 68, 2350–2357. [Google Scholar] [CrossRef]
- Kadlec, P. Design of Artificial Neural Network for Antenna Synthesis using the Optimization with Variable Number of Dimensions. In Proceedings of the 2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA), Kosice, Slovakia, 21–22 April 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Mallioras, I.; Zaharis, Z.D.; Lazaridis, P.I.; Pantelopoulos, S. A Novel Realistic Approach of Adaptive Beamforming based on Deep Neural Networks. IEEE Trans. Antennas Propag. 2022, 1. [Google Scholar] [CrossRef]
- Oluyemi, O.; Laforge, P.; Bais, A. Artificial Neural Network for Microwave Filter Design using a Circuit Model. In Proceedings of the 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Winnipeg, MB, Canada, 8–11 August 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, W.; Xiao, J.; Lu, Z.; Li, Z.; Huang, Q.; Chen, Z.; Blaabjerg, F. RL-ANN-Based Minimum-Current-Stress Scheme for the Dual-Active-Bridge Converter with Triple-Phase-Shift Control. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 673–689. [Google Scholar] [CrossRef]
- Baghelani, M. Wide-Band Label-Free Selective Microwave Resonator-Based Sensors for Multi-Component Liquid Analysis. IEEE Sens. J. 2022, 22, 2128–2134. [Google Scholar] [CrossRef]
- Zingg, R.; Gupta, K. An approach for knowledge-aided-design (KAD) of microwave circuits using artificial neural networks. In Proceedings of the 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), Phoenix, AZ, USA, 20–24 May 2001; Volume 2, pp. 1011–1014. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, C. Slow Wave Structure’ Internal Temperature Prediction Based on Experimental Data. In Proceedings of the 2021 22nd International Vacuum Electronics Conference (IVEC), Rotterdam, The Netherlands, 27–30 April 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Vasu Babua, K.; Das, S.; Naga Jyothi Sree, G.; Patel, S.K.; Pardha Saradhia, M.; Tagore, M.R.N. Design and development of miniaturized MIMO antenna using parasitic elements and Machine learning (ML) technique for lower sub 6 GHz 5G applications. AEU—Int. J. Electron. Commun. 2022, 153, 154281. [Google Scholar] [CrossRef]
- Chetioui, M.; Boudkhil, A.; Benabdallah, N.; Benahmed, N. Design and optimization of SIW patch antenna for Ku band applications using ANN algorithms. In Proceedings of the 2018 4th International Conference on Optimization and Applications (ICOA), Mohammedia, Morocco, 26–27 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Vilović, I.; Burum, N.; Brailo, M. Microstrip antenna design using neural networks optimized by PSO. In Proceedings of the ICECom 2013, Dubrovnik, Croatia, 14–16 October 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Abbassi, P.k.; Badra, N.M.; Allam, A.M.M.; El-Rafei, A. WiFi Antenna Design and Modeling using Artificial Neural Networks. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 270–274. [Google Scholar] [CrossRef]
- Saxena, P.; Pani, S. Design of Microstrip Patch Antenna amp; Its Analysis Through ANN for Terahertz Application. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 391–394. [Google Scholar] [CrossRef]
- Kulshrestha, S.; Chakrabarty, S.B.; Mahajan, M.B. Application of Artificial Neural Network for Planar Printed Antenna Optimization. In Proceedings of the 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), Ahmedabad, India, 19–22 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Prajapati, G.K.; Sadanandam, K.; Nalla, S. Artificial Intelligence based Antenna Design for Future Millimeter Wave Wireless Communication in Fifth Generation. In Proceedings of the 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India, 13–14 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Xuan Trung, N.V.; Bach Thuan, B.; Cuong, B.M.; Son Xuat, T.; Kiem, N.K.; Ngoc Chien, D. Modeling of Mobile Antenna optimization based on Artificial Neural Network. In Proceedings of the 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam, 12–13 December 2019; pp. 444–447. [Google Scholar] [CrossRef]
- Mahamdi, A.; Benkouda, S.; Bedra, S. Artificial Neural Network Model Analysis of Tunable Circular Microstrip Patch Antenna. In Proceedings of the 2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET), Hammamet, Tunisia, 19–22 March 2019; pp. 229–233. [Google Scholar] [CrossRef]
- ALİ, D.; ELWİ, T.; ÖZBAY, S. Metamaterial-based Printed Circuit Antenna for Biomedical Applications. Avrupa Bilim Teknol. Derg. 2021, 2021, 12–15. [Google Scholar] [CrossRef]
- Luo, H.Y.; Hong, Y.; Lv, Y.H.; Shao, W. Parametric Modeling of UWB Antennas Using Convolutional Neural Networks. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 2055–2056. [Google Scholar] [CrossRef]
- Lovato, R.; Gong, X. Phased Antenna Array Beamforming using Convolutional Neural Networks. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1247–1248. [Google Scholar] [CrossRef]
- Lin, T.; Zhu, Y. Beamforming Design for Large-Scale Antenna Arrays Using Deep Learning. IEEE Wirel. Commun. Lett. 2020, 9, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Kondratieva, S.; Ovchinnikova, E.; Shmachilin, P.; Anosova, N. Artificial Neural Networks in Digital Antenna Arrays. In Proceedings of the 2019 International Conference on Engineering and Telecommunication (EnT), Dolgoprudny, Russia, 20–21 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- You, M.Y.; Lu, A.N.; Ye, Y.X.; Huang, K.; Jiang, B. A Review on Machine Learning-Based Radio Direction Finding. Math. Probl. Eng. 2020, 2020, 8345413. [Google Scholar] [CrossRef]
- Xiao, Y.; Yun, Z.; Iskander, M. AoA Estimation with Practical Antenna Arrays Using Neural Networks. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 43–44. [Google Scholar] [CrossRef]
- Chen, M.; Gong, Y.; Mao, X. Deep Neural Network for Estimation of Direction of Arrival with Antenna Array. IEEE Access 2020, 8, 140688–140698. [Google Scholar] [CrossRef]
- Lecci, M.; Testolina, P.; Rebato, M.; Testolin, A.; Zorzi, M. Machine Learning-Aided Design Of Thinned Antenna Arrays For Optimized Network Level Performance. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Xiong, C.; Xiao, G. A Diagnosing Method for Phased Antenna Array Element Excitation Amplitude and Phase Failures Using Random Binary Matrices. IEEE Access 2020, 8, 33060–33071. [Google Scholar] [CrossRef]
- Alaukally, M.N.N.; Elwi, T.A.; Atilla, D.C. Miniaturized flexible metamaterial antenna of circularly polarized high gain-bandwidth product for radio frequency energy harvesting. Int. J. Commun. Syst. 2021, 35, e5024. [Google Scholar] [CrossRef]
- Huang, R.; Wong, V.W. Joint User Scheduling, Phase Shift Control, and Beamforming Optimization in Intelligent Reflecting Surface-Aided Systems. IEEE Trans. Wirel. Commun. 2022. [Google Scholar] [CrossRef]
- Kim, H.; Wu, J.; Park, Y.; Kim, S.; Shim, B. Deep Learning-Based Intelligent Reflecting Surface Phase Shift Control. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Bohara, B.; Karbozov, A.; Krishnamoorthy, H.S. Triple Phase Shift Control of Dual Active Bridge Converter using Machine Learning Methods. In Proceedings of the 2022 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 28 February–1 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, X.; Li, X.; Sun, C.; Cai, W.; Zhang, Z. Automatic Triple Phase-Shift Modulation for DAB Converter with Minimized Power Loss. IEEE Trans. Ind. Appl. 2022, 58, 3840–3851. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zhu, D.; Zhang, N.; Li, X.; Zhang, X. Nonlinear Phase Shift Estimation in Coherent Optical Communication Systems with Neural Networks. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Meenakshisundaram, V.; Osterloh, D.; Lietuvninkas, A.; Massman, J.; Tumpak, J.; Deaton, J.; Buskohl, P. Design of Graded Dielectric Waveguides with Preferential Band-Pass Frequencies. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium (ACES), Nanjing, China, 8–11 August 2019; pp. 1–2. [Google Scholar]
- Hu, X.; Buris, N.E. A Deep Learning Framework for Solving Rectangular Waveguide Problems. In Proceedings of the 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 8–11 December 2020; pp. 409–411. [Google Scholar] [CrossRef]
- Anderson, D.S.; Juarez, C.D.S.; Rodriguez-Esquerre, V.F.; Zhaowei, L. Artificial Neural Networks Approach for the Analysis and Synthesis of Metamaterial Waveguides. Metamaterials Metadevices Metasyst. 2020, 11460, 1–5. [Google Scholar] [CrossRef]
- Sam, K.S.; Goay, C.H.; Ahmad, N.S.; Goh, P. Artificial Neural Network Modeling of Meander Lines for Delay based Applications. Int. J. Recent Technol. Eng. (IJRTE) 2019, 8, 1372–1377. [Google Scholar]
- Liu, W.; Zhu, L.; Feng, F.; Zhang, W.; Zhang, Q.J.; Lin, Q.; Liu, G. A Time Delay Neural Network Based Technique for Nonlinear Microwave Device Modeling. Micromachines 2020, 11, 831. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.S.V.; Cunha Neto, H.N.; Lopez, M.A.; Magalhães, L.C.S.; Fernandes, N.C.; Vieira, A.B.; Silva, E.F.; Mattos, D.M.F. A survey on data analysis on large-Scale wireless networks: Online stream processing, trends, and challenges. J. Internet Serv. Appl. 2020, 11, 1–48. [Google Scholar] [CrossRef]
- Lu, J.; Fan, Q.; Zhou, G.; Lu, L.; Yu, C.; Lau, A.P.T.; Lu, C. Automated training dataset collection system design for machine learning application in optical networks: An example of quality of transmission estimation. J. Opt. Commun. Netw. 2021, 13, 289–300. [Google Scholar] [CrossRef]
- Mishra, S.; Yadav, R.N.; Singh, R.P. Neural Networks in Smart Antenna Design for Co-channel Interference (CCI) Reduction: A Review. In Proceedings of the 2009 Fifth International Conference on Wireless and Mobile Communications, Cannes/La Bocca, France, 23–29 August 2009; pp. 228–233. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Shao, W.; Ding, X.; Wang, B.Z.; Joines, W.T.; Liu, Q.H. Parametric Modeling of Microwave Components Based on Semi-Supervised Learning. IEEE Access 2019, 7, 35890–35897. [Google Scholar] [CrossRef]
- Musumeci, F.; Magni, L.; Ayoub, O.; Rubino, R.; Capacchione, M.; Rigamonti, G.; Milano, M.; Passera, C.; Tornatore, M. Supervised and Semi-Supervised Learning for Failure Identification in Microwave Networks. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1934–1945. [Google Scholar] [CrossRef]
- Yang, X.; Song, Z.; King, I.; Xu, Z. A Survey on Deep Semi-supervised Learning. arXiv 2021, arXiv:abs/2103.00550. [Google Scholar]
- Zhang, Y.; Zhao, Z. Limited Data Spectrum Sensing Based on Semi-Supervised Deep Neural Network. IEEE Access 2021, 9, 166423–166435. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Shao, W.; Jin, F.L.; Wang, B.Z.; Joines, W.T.; Liu, Q.H. Semisupervised Radial Basis Function Neural Network with an Effective Sampling Strategy. IEEE Trans. Microw. Theory Tech. 2020, 68, 1260–1269. [Google Scholar] [CrossRef]
- Javali, A.; Sahoo, A.; Gupta, J. Machine Learning Algorithms in Smart Antenna and Arrays for Internet of Things Applications. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 297–301. [Google Scholar] [CrossRef]
- Huang, H.; Xia, W.; Xiong, J.; Yang, J.; Zheng, G.; Zhu, X. Unsupervised Learning Based Fast Beamforming Design for Downlink MIMO. IEEE Access 2018, 7, 7599–7605. [Google Scholar] [CrossRef]
- Khan, M.M.; Hossain, S.; Mozumdar, P.; Akter, S.; Ashique, R.H. A review on machine learning and deep learning for various antenna design applications. Heliyon 2022, 8, e09317. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, Y.; Gao, F.; Zhou, T.; Ma, H. Deep Unsupervised Learning for Joint Antenna Selection and Hybrid Beamforming. IEEE Trans. Commun. 2022, 70, 1697–1710. [Google Scholar] [CrossRef]
- Schmarje, L.; Santarossa, M.; Schröder, S.M.; Koch, R. A Survey on Semi-, Self- and Unsupervised Learning for Image Classification. IEEE Access 2021, 9, 82146–82168. [Google Scholar] [CrossRef]
- Peng, S.; Cao, W.; Bi, L.; Yuan, Y.; Wu, M. A tuning strategy for microwave filter using variable universe adaptive fuzzy logic system. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 6061–6066. [Google Scholar] [CrossRef]
- Valdivia, G.R. Fuzzy Logic based Method for the Extraction of Extrinsic and Intrinsic Elements of Microwave Transistors. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 9, 3911–3914. [Google Scholar] [CrossRef]
- Hinojosa, J.; Quesada Pereira, F.D.; Martínez-Mendoza, M.; Alvarez-Melcón, A. Optimization-Oriented Design of RF/Microwave Circuits Using Inverse-Linear-Input Neuro-Fuzzy-Output Space Mapping with Two Different Dimensionality Simulators. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 176–185. [Google Scholar] [CrossRef]
- Karpuz, C.; İnan, O.; Görür, A. Calculation of quasistatic parameters for asymmetric coplanar waveguides using fuzzy logic. In Proceedings of the 2014 Asia-Pacific Microwave Conference, Sendai, Japan, 4–7 November 2014; pp. 298–300. [Google Scholar]
- Yakubu, H.S.; Thomas, S.; Hussein, S.U.; Anye, V.; Koyunlu, G.; Oshiga, O. Azimuth Position Control for Deep Space Antenna using Fuzzy Logic Controller. In Proceedings of the 2019 15th International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, 10–12 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Vaskovic, M.; Kodogiannis, V.; Budimir, D. An Adaptive Fuzzy Logic System for the Compensation of Nonlinear Distortion in Wireless Power Amplifiers. Neural Comput. Appl. 2018, 30, 2539–2554. [Google Scholar] [CrossRef] [Green Version]
- Shah, F.M.; Maqsood, S.; Damaševičius, R.; Blažauskas, T. Disturbance rejection and control design of mvdc converter with evaluation of power loss and efficiency comparison of sic and si based power devices. Electronics 2020, 9, 1878. [Google Scholar] [CrossRef]
- de Souza, G.A.F.; dos Santos, R.B.; de Abreu Faria, L. Low-Power Current-Mode Interval Type-2 Fuzzy Inference Engine Circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2639–2650. [Google Scholar] [CrossRef]
- Tynchenko, V.S.; Milov, A.V.; Bukhtoyarov, V.V.; Kukartsev, V.V.; Tynchenko, V.V.; Bashmur, K.A. Control of the technological process of the waveguide paths induction soldering in the framework of Industry 4.0. J. Phys. Conf. Ser. 2019, 1399, 044087. [Google Scholar] [CrossRef]
- Ching, H. Fuzzy Logic: The Genius of Lofti Zadeh [My View]. IEEE Ind. Electron. Mag. 2017, 11, 6–37. [Google Scholar] [CrossRef]
- Naah, G.; Giofrè, R. Empowering the Bandwidth of Continuous-Mode Symmetrical Doherty Amplifiers by Leveraging on Fuzzy Logic Techniques. IEEE Trans. Microw. Theory Tech. 2020, 68, 3134–3147. [Google Scholar] [CrossRef] [Green Version]
- Vardhana, M. Fuzzy Logic Based Performance Analysis of Various Antenna Structures. Int. J. Grid Distrib. Comput. 2019, 12, 1–10. [Google Scholar] [CrossRef]
Database | URL |
---|---|
IEEE Xplore | http://ieeexplore.ieee.org/ (accessed on 6 June 2022) |
Science Direct | http://sciencedirect.com/ (accessed on 6 June 2022) |
Springer Link | http://link.springer.com/ (accessed on 6 June 2022) |
Wiley | http://onlinelibrary.wiley.com/ (accessed on 6 June 2022) |
ACM | http://dl.acm.org/ (accessed on 6 June 2022) |
Inclusivity criteria | |
---|---|
1 | Peer-reviewed original articles |
2 | Articles proposing an neural network based microwave design |
3 | Articles that utilize other machine learning based microwave design methods |
3 | Articles that present application of machine learning based microwave designs |
5 | Recency of articles in case of multiple repeated studies |
Exclusivity criteria | |
1 | Articles that are not written in English |
2 | Studies with invalidated techniques and algorithms |
3 | Articles that utilize neural network design on other purposes |
4 | Articles that not utilize microwave design |
5 | Articles that do not clearly mention microwave in the title |
6 | Articles providing unclear results or findings |
7 | Duplicated studies |
Data Item | Description |
---|---|
Title | Article title |
Year | Year of publication |
Author(s) | The article author(s) |
Publication type | Journal, Proceeding, etc. |
Publication medium | The medium via which the article is published |
Country | Researchers’ affiliation country |
Contribution | The major contribution of the article |
Summary | Summary of the article from our perspective |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katkevičius, A.; Plonis, D.; Damaševičius, R.; Maskeliūnas, R. Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review. Electronics 2022, 11, 2360. https://doi.org/10.3390/electronics11152360
Katkevičius A, Plonis D, Damaševičius R, Maskeliūnas R. Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review. Electronics. 2022; 11(15):2360. https://doi.org/10.3390/electronics11152360
Chicago/Turabian StyleKatkevičius, Andrius, Darius Plonis, Robertas Damaševičius, and Rytis Maskeliūnas. 2022. "Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review" Electronics 11, no. 15: 2360. https://doi.org/10.3390/electronics11152360
APA StyleKatkevičius, A., Plonis, D., Damaševičius, R., & Maskeliūnas, R. (2022). Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review. Electronics, 11(15), 2360. https://doi.org/10.3390/electronics11152360