Network Slicing for mMTC and URLLC Using Software-Defined Networking with P4 Switches
Abstract
:1. Introduction
2. Related Works
- Bandwidth resource allocation, differentiating access times, or RAN frequency reuse.
- Dividing the entire network into multiple virtual E2E networks (i.e., network slices) by using virtualization technology. Network slices are independent of each other in their equipment, access, transport, and core networks.
3. The Proposed SDNPS
3.1. SDNPS Framework
3.2. Data Packet Format
- When a data packet from the source host enters the data plane, the INT source can add an INT header to tell the subsequent P4 switches which information (called ‘INT data’) they should write.
- The INT transit hop can write its own INT data into the specified field in accordance with the content indicated by the INT header.
- When a data packet carrying INT data arrives at the INT sink, all of the recorded INT data along a flow path are extracted and reported to the collector module. The original data packet is then forwarded to the destination host.
- Switch ID: the unique ID of a switch.
- Ingress port ID: the port ID of a received INT packet.
- Ingress timestamp: the time that an INT packet is received.
- Egress port ID: the port ID of a forwarded INT packet.
- Hop latency: the processing time of an INT packet in the switch.
- Egress port transmission (TX) link utilization: the link bandwidth utilization when an INT packet is forwarded.
- Queue occupancy: queue occupancy observed at the switch when an INT packet is forwarded.
- Queue congestion status: congestion status of the current queue.
3.3. Pseudocode of SDNPS
4. Performance Evaluation
4.1. Simulation Settings
4.2. Results and Discussions
4.2.1. URLLC Slice
4.2.2. mMTC Slice
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of Things in the 5G Era: Enablers, Architecture, and Business Models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Pokhrel, S.R.; Ding, J.; Park, J.; Park, O.-S.; Choi, J. Towards Enabling Critical mMTC: A Review of URLLC Within mMTC. IEEE Access 2020, 8, 131796–131813. [Google Scholar] [CrossRef]
- 5G White Paper Version 1.0. Available online: https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf (accessed on 10 June 2022).
- Foukas, X.; Patounas, G.; Elmokashfi, A.; Marina, M.K. Network Slicing in 5G: Survey and Challenges. IEEE Commun. Mag. 2017, 55, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Rost, P.; Mannweiler, C.; Michalopoulos, D.S.; Sartori, C.; Sciancalepore, V.; Sastry, N.; Holland, O.; Tayade, S.; Han, B.; Bega, D.; et al. Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks. IEEE Commun. Mag. 2017, 55, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Yu, B.-Y.; Jin, H.; Yoo, C. Libera for Programmable Network Virtualization. IEEE Commun. Mag. 2020, 58, 38–44. [Google Scholar] [CrossRef]
- Yang, G.; Yoo, Y.; Kang, M.; Jin, H.; Yoo, C. Bandwidth Isolation Guarantee for SDN Virtual Networks. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [Google Scholar]
- Afolabi, I.; Taleb, T.; Samdanis, K.; Ksentini, A.; Flinck, H. Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 2429–2453. [Google Scholar] [CrossRef]
- Kreutz, D.; Ramos, F.M.V.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [Google Scholar] [CrossRef] [Green Version]
- Lara, A.; Kolasani, A.; Ramamurthy, B. Network Innovation using OpenFlow: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 493–512. [Google Scholar] [CrossRef] [Green Version]
- Open Networking Foundation (ONF). Available online: https://www.opennetworking.org/ (accessed on 10 June 2022).
- Barakabitze, A.A.; Ahmad, A.; Mijumbi, R.; Hines, A. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Comput. Netw. 2020, 167, 106984. [Google Scholar] [CrossRef]
- McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [Google Scholar] [CrossRef]
- Yeganeh, S.H.; Tootoonchian, A.; Ganjali, Y. On scalability of software-defined networking. IEEE Commun. Mag. 2013, 51, 136–141. [Google Scholar] [CrossRef]
- Bianco, A.; Giaccone, P.; Mahmood, A.; Ullio, M.; Vercellone, V. Evaluating the SDN control traffic in large ISP networks. In Proceedings of the 2015 IEEE International Conference on Communications, London, UK, 8–12 June 2015; pp. 5248–5253. [Google Scholar]
- Yu, B.-Y.; Yang, G.; Yoo, C. Comprehensive Prediction Models of Control Traffic for SDN Controllers. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops, Montreal, QC, Canada, 25–29 June 2018; pp. 262–266. [Google Scholar]
- Bianchi, G.; Bonola, M.; Capone, A.; Cascone, C. OpenState. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 44–51. [Google Scholar] [CrossRef]
- Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al. P4: Programming Protocol-independent Packet Processors. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [Google Scholar] [CrossRef]
- Song, H. Protocol-oblivious Forwarding: Unleash the Power of SDN through a Future-proof Forwarding Plane. In Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 16 August 2013; pp. 127–132. [Google Scholar]
- Zhu, S.; Bi, J.; Sun, C.; Wu, C.; Hu, H. SDPA: Enhancing Stateful Forwarding for Software-Defined Networking. In Proceedings of the 2015 IEEE 23rd International Conference on Network Protocols, San Francisco, CA, USA, 10–13 November 2015; pp. 323–333. [Google Scholar]
- Arashloo, M.T.; Koral, Y.; Greenberg, M.; Rexford, J.; Walker, D. SNAP: Stateful Network-Wide Abstractions for Packet Processing. In Proceedings of the 2016 ACM SIGCOMM Conference, Florianópolis, Brazil, 22–26 August 2016; pp. 29–43. [Google Scholar]
- Tan, L.; Su, W.; Zhang, W.; Lv, J.; Zhang, Z.; Miao, J.; Liu, X.; Li, N. In-band Network Telemetry: A Survey. Comput. Netw. 2020, 186, 107763. [Google Scholar] [CrossRef]
- Althumali, H.; Othman, M. A Survey of Random Access Control Techniques for Machine-to-Machine Communications in LTE/LTE-A Networks. IEEE Access 2018, 6, 74961–74983. [Google Scholar] [CrossRef]
- Balevi, E.; Gitlin, R.D. A Random Access Scheme for Large Scale 5G/IoT Applications. In Proceedings of the IEEE 5G World Forum, Silicon Valley, CA, USA, 9–11 July 2018; pp. 452–456. [Google Scholar]
- Chen, M.; Miao, Y.; Hao, Y.; Hwang, K. Narrow Band Internet of Things. IEEE Access 2017, 5, 20557–20577. [Google Scholar] [CrossRef]
- Migabo, E.M.; Djouani, K.D.; Kurien, A.M. The Narrowband Internet of Things (NB-IoT) Resources Management Performance State of Art, Challenges, and Opportunities. IEEE Access 2020, 8, 97658–97675. [Google Scholar] [CrossRef]
- Malik, H.; Sarmiento, J.L.R.; Alam, M.M.; Imran, M.A. Narrowband-Internet of Things (NB-IoT): Performance Evaluation in 5G Heterogeneous Wireless Networks. In Proceedings of the 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, Limassol, Cyprus, 11–13 September 2019; pp. 1–6. [Google Scholar]
- 3GPP Release 13. Available online: https://www.3gpp.org/release-13 (accessed on 10 June 2022).
- Sharma, S.K.; Wang, X. Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions. IEEE Commun. Surv. Tutor. 2020, 22, 426–471. [Google Scholar] [CrossRef] [Green Version]
- Magrin, D.; Pielli, C.; Stefanović, Č.; Zorzi, M. Enabling LTE RACH Collision Multiplicity Detection via Machine Learning. In Proceedings of the 2019 International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Avignon, France, 27–31 May 2019; pp. 1–8. [Google Scholar]
- Modina, N.; Ferrari, R.; Magarini, M. A machine learning-based design of PRACH receiver in 5G. Procedia Comput. Sci. 2019, 151, 1100–1107. [Google Scholar] [CrossRef]
- Tello-Oquendo, L.; Pacheco-Paramo, D.; Pla, V.; Martinez-Bauset, J. Reinforcement Learning-Based ACB in LTE-A Networks for Handling Massive M2M and H2H Communications. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Garcia-Morales, J.; Lucas-Estan, M.C.; Gozalvez, J. Latency-Sensitive 5G RAN Slicing for Industry 4.0. IEEE Access 2019, 7, 143139–143159. [Google Scholar] [CrossRef]
- Yang, P.; Xi, X.; Quek, T.Q.S.; Chen, J.; Cao, X.; Wu, D. RAN Slicing for Massive IoT and Bursty URLLC Service Multiplexing: Analysis and Optimization. IEEE Internet Things J. 2021, 8, 14258–14275. [Google Scholar] [CrossRef]
- Popovski, P.; Trillingsgaard, K.F.; Simeone, O.; Durisi, G. 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access 2018, 6, 55765–55779. [Google Scholar] [CrossRef]
- Kokkinos, P.; Soumplis, P.; Kretsis, A.; Varvarigos, E.M. Network Slicing in 5G Infrastructures from the Edge to the Core. In Proceedings of the 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, Porto, Portugal, 20–22 July 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chahbar, M.; Diaz, G.; Dandoush, A.; Cerin, C.; Ghoumid, K. A Comprehensive Survey on the E2E 5G Network Slicing Model. IEEE Trans. Netw. Serv. Manag. 2021, 18, 49–62. [Google Scholar] [CrossRef]
- Bockelmann, C.; Pratas, N.K.; Wunder, G.; Saur, S.; Navarro, M.; Gregoratti, D.; Vivier, G.; De Carvalho, E.; Ji, Y.; Stefanovic, C.; et al. Towards Massive Connectivity Support for Scalable mMTC Communications in 5G Networks. IEEE Access 2018, 6, 28969–28992. [Google Scholar] [CrossRef]
- Ren, H.; Pan, C.; Deng, Y.; Elkashlan, M.; Nallanathan, A. Resource Allocation for URLLC in 5G Mission-Critical IoT Networks. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Varsier, N.; Dufrène, L.-A.; Dumay, M.; Lampin, Q.; Schwoerer, J. A 5G New Radio for Balanced and Mixed IoT Use Cases: Challenges and Key Enablers in FR1 Band. IEEE Commun. Mag. 2021, 59, 82–87. [Google Scholar] [CrossRef]
- Franchi, F.; Marotta, A.; Rinaldi, C.; Graziosi, F.; D’Errico, L. IoT-based Disaster Management System on 5G uRLLC Network. In Proceedings of the 2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Paris, France, 18–20 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Alvarez-Horcajo, J.; Martinez-Yelmo, I.; Lopez-Pajares, D.; Carral, J.A.; Savi, M. A Hybrid SDN Switch Based on Standard P4 Code. IEEE Commun. Lett. 2021, 25, 1482–1485. [Google Scholar] [CrossRef]
- Gokarslan, K.; Sandal, Y.S.; Tugcu, T. Towards a URLLC-Aware Programmable Data Path with P4 for Industrial 5G Networks. In Proceedings of the 2021 IEEE International Conference on Communications Workshops, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Paolucci, F.; Cugini, F.; Castoldi, P.; Osinski, T. Enhancing 5G SDN/NFV Edge with P4 Data Plane Programmability. IEEE Netw. 2021, 35, 154–160. [Google Scholar] [CrossRef]
- In-Band Network Telemetry Specifications. Available online: https://p4.org/specs/ (accessed on 10 June 2022).
- Mininet. Available online: https://github.com/mininet/mininet (accessed on 10 June 2022).
- Ryu Controller. Available online: https://ryu-sdn.org/index.html (accessed on 10 June 2022).
- Behavioral Model Version 2 (BMv2). Available online: https://github.com/p4lang/behavioral-model (accessed on 10 June 2022).
- Iperf. Available online: https://iperf.fr (accessed on 10 June 2022).
Parameters | LTE-M | NB-IoT |
---|---|---|
Frequency band | All | Some FDD bands |
Cell bandwidth | 1.4–20 MHz | 180 KHz |
UE bandwidth | 1.4 MHz | 180 KHz |
Duplex mode | TDD, FDD, Half duplex FDD | Half duplex FDD |
Mobility | High | Low |
Receiving antenna | 1 | 1 |
Maximum power | 20/23 dBm | 20/23 dBm |
Peak DL data rate | 1 Mbps | 250 Kbps |
Peak UL data rate | 1 Mbps | 250 Kbps |
Symbols | Denotations |
---|---|
Ts | Sampling period for INT data |
Hd | Threshold of delay for each switch |
Hq | Threshold of queue occupancy for each switch |
Hu | Threshold of link utilization for each switch |
Di | Hop Delay of switch i |
Qi | Queue occupancy of switch i |
Li | Link utilization of switch i |
Network Slicing |
m paths in the mMTC slice: M = {ftj |1 ≤ j ≤ m} r paths in the URLLC slice: R = {frj |1 ≤ j ≤ r} Packet forwarding:
|
Parameters | Values |
---|---|
Simulator | Mininet 2.5 |
SDN controller | Ryu Controller |
Switch | OpenFlow or P4 |
Link bandwidth | 20 Mbps, 30 Mbps, 60 Mbps |
Packet size | 1470 Byte |
Queue size | 50 packets |
URLLC flow | 5 Mbps, 17 Mbps |
mMTC flow | 50 Kbps |
Number of mMTC devices | 100, 250, 500 |
Packet transport protocol | UDP |
Packet generation tool | Iperf |
Flow paths for URLLC slice | #1. S1-S3-S5-S6#2. S1-S3-S4-S6 |
Flow paths for mMTC slice | #1. S1-S2-S5-S4-S6#2. S1-S2-S4-S5-S6 |
Ts | 0.5 s |
Hd | 1 millisecond |
Hq | 80% |
Hu | 80% |
Simulation time | 10 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-J.; Hwang, W.-S.; Shen, C.-Y.; Chen, Y.-Y. Network Slicing for mMTC and URLLC Using Software-Defined Networking with P4 Switches. Electronics 2022, 11, 2111. https://doi.org/10.3390/electronics11142111
Wu Y-J, Hwang W-S, Shen C-Y, Chen Y-Y. Network Slicing for mMTC and URLLC Using Software-Defined Networking with P4 Switches. Electronics. 2022; 11(14):2111. https://doi.org/10.3390/electronics11142111
Chicago/Turabian StyleWu, Yan-Jing, Wen-Shyang Hwang, Chih-Yi Shen, and Yu-Yen Chen. 2022. "Network Slicing for mMTC and URLLC Using Software-Defined Networking with P4 Switches" Electronics 11, no. 14: 2111. https://doi.org/10.3390/electronics11142111
APA StyleWu, Y.-J., Hwang, W.-S., Shen, C.-Y., & Chen, Y.-Y. (2022). Network Slicing for mMTC and URLLC Using Software-Defined Networking with P4 Switches. Electronics, 11(14), 2111. https://doi.org/10.3390/electronics11142111