Research on an Optimized Overmodulation Strategy Based on Rectifier of Indirect Space Vector of Matrix Converter
Abstract
:1. Introduction
2. The Topology of the MC
3. Input Current Vector Optimal Modulation Strategy of the VSR of the MC
3.1. Traditional Modulation Strategy of Input Current Vector
3.2. The Reason for the Big Output Voltage Error and High Input Current THD
3.3. Input Current Vector Synthesized Optimal Modulation Strategy
4. Simulation and Experiments
4.1. Simulation Research
4.2. Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Su, M.; Sun, Y.; Dan, H.B.; Xiong, W. Modulation strategies based on mathematical construction for matrix converter extending the input reactive power range. IEEE Trans. Power Electron. 2014, 29, 654–664. [Google Scholar] [CrossRef]
- Alexandre, B.; Guilherme, P.; Pedro, C.; Lijun, Z.; Ferreira, P.S.; Fernando, S.J. On the potential contributions of matrix converters for the future grid operation, sustainable transportation and electrical drives innovation. Appl. Sci. 2021, 11, 4597. [Google Scholar]
- Varajão, D.; Araújo, R.E. Modulation methods for direct and indirect matrix converters: A review. Electronics 2021, 10, 812. [Google Scholar] [CrossRef]
- Mengoni, M.; Zarri, L.; Tani, A.; Rini, G.; Serra, G.; Casadei, D. A modulation strategy for matrix converter with extended control range and reduced switching power losses. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, USA, 15–19 September 2013; pp. 2721–2728. [Google Scholar]
- Pipolo, S.; Formentini, A.; Trentin, A.; Zanchetta, P.; Calvini, M.; Venturini, M. A new modulation approach for matrix converter. In Proceedings of the 10th International Conference on Power Electronics, Busan, Korea, 27–30 May 2019. [Google Scholar] [CrossRef]
- Huber, L.; Borojevic, D. Space vector modulated three-phase to three-phase matrix converter with input power factor correction. IEEE Trans. Ind. Appl. 1995, 31, 1234–1236. [Google Scholar] [CrossRef]
- Dabour, S.M.; Rashad, E.M. Analysis and implementation of space-vector-modulated three-phase matrix converter. IET Power Electron. 2012, 5, 1374–1378. [Google Scholar] [CrossRef]
- Pipolo, S.; Formentini, A.; Trentin, A.; Zanchetta, P.; Calvini, M.; Venturini, M. A novel matrix converter modulation with reduced number of commutations. IEEE Trans. Ind. Appl. 2021, 57, 4991–5000. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A. State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 2012, 9, 1003–1016. [Google Scholar] [CrossRef]
- Vargas, R.; Ammann, U.; Rodriguez, J. Predictive approach to increase efficiency and reduce switching losses on matrix converters. IEEE Trans. Power Electron. 2009, 24, 894–902. [Google Scholar] [CrossRef]
- Xia, C.; Zhao, J.; Yan, Y.; Shi, T. A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction. IEEE Trans. Ind. Electron. 2014, 61, 2700–2713. [Google Scholar] [CrossRef]
- Lee, K.-B.; Blaabjerg, F. Sensorless DTC-SVM for induction motor driven by a matrix converter using a parameter estimation strategy. IEEE Trans. Ind. Electron. 2008, 55, 512–521. [Google Scholar] [CrossRef]
- Siami, M.; Khaburi, D.A.; Rodriguez, J. Simplified finite control set-model predictive control for matrix converter-fed PMSM drives. IEEE Trans. Power Electron. 2018, 33, 2438–2446. [Google Scholar] [CrossRef]
- Lin, Z.J.; Hua, Z.J.; Gui, G.Y.; Luo, W.B.; Liu, W.H. Voltage transfer characteristic and harmonic analysis of matrix converter under over modulation. Proc. CSEE 2007, 27, 110–113. [Google Scholar]
- Su, M.; Li, D.-Y.; Sun, Y.; Yu, Y. Analysis of the over-modulation strategy for two-stage matrix converter. Proc. CSEE 2008, 28, 47–53. [Google Scholar]
- Liu, S.; Ge, B.; Jiang, X.; Abu-Rub, H.; Peng, F. Comparative evaluation of three Z-source/quasi-Z-Source indirect matrix converters. IEEE Trans. Ind. Electron. 2015, 62, 692–701. [Google Scholar] [CrossRef]
- Kun, D.Q.; Juan, G.H.; Quan, L.G. Over-modulation strategy of matrix converter based on multi-orbit vector weighted. Trans. China Electro Tech. Soc. 2011, 26, 100–106. [Google Scholar]
- Li, S. Improving voltage transfer ratio of matrix converter employing single-mode and two-mode overmodulation technology. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009; Volume 3, pp. 71–74. [Google Scholar]
- Tamai, Y.; Sato, I.; Odaka, A.; Mine, H.; Itoh, J.I. A novel control strategy for matrix converter in the over-modulation range. Electr. Eng. 2009, 168, 40–48. [Google Scholar] [CrossRef]
- Song, W.; Zhong, Y.; Wei, X.; Sun, X. Space vector over-modulation strategy used for two-stage matrix converters. Trans. China Electrotech. Soc. 2012, 27, 242–250. [Google Scholar]
- Bozorgi, A.M.; Monfared, M.; Mashhadi, H.R. Two simple over-modulation algorithms for space modulated three-phase to three-phase matrix converter. IET Power Electron. 2014, 7, 1915–1924. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.W.; Liu, Y.; Wen, X.H. A novel algorithm of SVPWM inverter in the over-modulation region based on fundamental voltage amplitude linear output control. Proc. CSEE 2005, 25, 12–18. [Google Scholar]
- Li, Y.; Qiu, L.; Zhi, Y.; Yan, G.; Zhang, J.; Ma, J.; Fang, Y. An over-modulation strategy for matrix converter under unbalanced input voltage. IEEE Access 2021, 9, 2345–2356. [Google Scholar] [CrossRef]
- Li, S.; Chen, W.; Yan, Y.; Shi, T.; Xia, C. A multimode space vector over-modulation strategy for ultrasparse matrix converter with improved fundamental voltage transfer ratio. IEEE Trans. Power Electron. 2018, 33, 6782–6793. [Google Scholar] [CrossRef]
- Rahman, K.; Al-Emadi, N.; Iqbal, A.; Rahman, S. Common mode voltage reduction technique in a three-to-three phase matrix converter. IET Electr. Power Appl. 2018, 12, 254–263. [Google Scholar] [CrossRef]
- Li, S.; Xia, C.; Yan, Y.; Shi, T. Space vector overmodulation strategy for ultra sparse matrix converter based on the maximum output voltage vector. IEEE Trans. Power Electron. 2017, 32, 5388–5397. [Google Scholar] [CrossRef]
- Bingsen, W.; Venkataramanan, G. Six step modulation of matrix converter with increased voltage transfer ratio. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–7. [Google Scholar]
- Guang, G.; Jian, Y.; Yao, S.; Su, M.; Zhu, Q.; Blaabjerg, F. A predictive-control-based over-modulation method for conventional matrix converters. IEEE Trans. Power Electron. 2018, 33, 3631–3643. [Google Scholar]
- Xia, Y.; Zhang, X.; Qiao, M.; Yu, F.; Wei, Y.; Zhu, P. Research on a new indirect space vector over-modulation method in matrix converter. IEEE Trans. Ind. Electron. 2016, 63, 1130–1141. [Google Scholar] [CrossRef]
Name | Parameters |
---|---|
Input phase voltage | 220 V/50 Hz |
Input filter | Rf = 50 Ω, Lf = 2 mH, Cf = 11.25 µF |
Switch frequency | fs = 5 kHz |
RL load | R = 40 Ω, L = 8 mH |
The Overmodulation Strategies | Parameters | ||
---|---|---|---|
THD (isa) | THD (iA) | Uerr (UA) | |
with no optimal input current synthesized (M = 0.88) | 10.14% | 7.14% | 13.6 V |
with optimal input current synthesized (M = 0.88) | 5.1% | 6.14% | 4.28 V |
with no optimal input current synthesized (M = 0.92) | 13.4% | 10.35% | 12.37 V |
with optimal input current synthesized (M = 0.92) | 10.06% | 10.14% | 5.26 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Zhang, X.; Ye, Z.; Wang, Z.; Huang, L. Research on an Optimized Overmodulation Strategy Based on Rectifier of Indirect Space Vector of Matrix Converter. Electronics 2022, 11, 2009. https://doi.org/10.3390/electronics11132009
Xia Y, Zhang X, Ye Z, Wang Z, Huang L. Research on an Optimized Overmodulation Strategy Based on Rectifier of Indirect Space Vector of Matrix Converter. Electronics. 2022; 11(13):2009. https://doi.org/10.3390/electronics11132009
Chicago/Turabian StyleXia, Yihui, Xiaofeng Zhang, Zhihao Ye, Zerun Wang, and Liming Huang. 2022. "Research on an Optimized Overmodulation Strategy Based on Rectifier of Indirect Space Vector of Matrix Converter" Electronics 11, no. 13: 2009. https://doi.org/10.3390/electronics11132009
APA StyleXia, Y., Zhang, X., Ye, Z., Wang, Z., & Huang, L. (2022). Research on an Optimized Overmodulation Strategy Based on Rectifier of Indirect Space Vector of Matrix Converter. Electronics, 11(13), 2009. https://doi.org/10.3390/electronics11132009