A Multi-Source Co-Simulation Method for the Thermal Stability of GaAs Sub-6G Power Amplifier with Adjustable Bias Current
Abstract
:1. Introduction
2. Principle of the Proposed Bias Circuit for ZTAT Current
3. Principle of Co-Simulation Method for Differential Heat Sources
3.1. Circuit Design
3.2. Layout Design
3.3. Thermal Modeling
- Modeling the heat sources as plates. Because the heat sources are thinner, the heat dissipation is concentrated on the upper surface.
- Modeling two primary materials for heat dissipating differently. One is the copper heat sinks at the bottom of chip, which connect the emitter of HBTs with the COB substrate. Those copper sinks release the majority of heat because of the good thermal conductivity. The other is the bonding wires at the top of chip, which can be simplified due to the limited area.
3.4. Thermal Analysis
3.5. Parameter Iteration
4. Experimental Results and Analysis Conclusions
4.1. The Experimental Results of PAs
4.2. The Experimental Results of Co-Simulation
- The temperatures of upper-central amplifier cells are higher than that of the lower-outer ones, so the D(x) and D(y) are gradually increased by 25 μm from center to outside and by 50 μm from top to bottom, respectively.
- The K6 = 0.62 is minimal in the 6th modeling where Tmax6 = 76.5 °C and ΔT6 = 9 °C. The area is S6 = 0.31 mm2 with a 40% increase. Figure 13 is the results of the 6th modeling.
- The maximal temperature Tmax stops falling after the 6th modeling. Continuing to increase the distance will be useless to reduce the temperature. There are two reasons: no matter how wide the spacing is, there must be 50% thermal power according to PAE; the heat dissipation is limited by the thermal conductivity of the heat sinks.
- Using the thermal factor K, the PA can be customized according to the specific requirements. For example, if the area cost is the first priority, the K3 = 0.68 is a considerable result in the 3rd modeling where Tmax3 = 79.4 °C ΔT3 = 10.7 °C and S3 = 0.28 mm2 with only 27% increase.
- For every 27% increases in area, the temperature reduces 10 °C and temperature variation reduces 7 °C.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, K.; Wang, X.; Cheng, X.; Han, J.; Chen, F.; Deng, X. An S-Band GaAs Multifunction Chip for Transmit/Receive Modules. IEEE Trans. Microw. Theory Tech. 2020, 68, 398–404. [Google Scholar] [CrossRef]
- Ozan, S.; Nair, M.; Cappello, T.; Beach, M.A. Low-Noise Amplifier with Wideband Feedforward Linearisation for Mid-Band 5G Receivers. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ha Long, Vietnam, 8–10 December 2020; pp. 125–126. [Google Scholar]
- Ahn, C.H.; Kim, Y.; Oh, S.; Noh, Y.; Lee, D.H.; Lee, S.; Cho, K.; Kim, J. Design and Realization of Low-Cost 10 W Power Amplifier Module at 7.9–8.4 GHz. IEICE Electron. Express 2018, 15, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Hao, R.; Zhang, X.; Wang, F.; Gao, H.; Cheng, J.; Li, G.P. A fully Integrated Broadband, High-Gain, High-Power and High-Efficiency UHF Amplifier Using GaAs HBT and GaN HEMT. IEICE Electron. Express 2017, 14, 639. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Qi, Y.; Yu, W.; Li, F.; Shen, P. Temperature Effects in OTA MIMO Measurement. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Huang, A.; Lin, K.H.; Wei, H.Y. Thermal Performance Enhancement with DRX in 5G Millimeter Wave Communication System. IEEE Access 2021, 9, 34692–34707. [Google Scholar] [CrossRef]
- Wang, T.H.; Chen, Y.H.; Chang, C.W.; Li, K.M.; Chen, J.H.; Staudinger, J. On the Thermal Memory Effect Reduction of Power Amplifiers Using Pulse Modulation. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 285–287. [Google Scholar] [CrossRef]
- Alim, M.A.; Chowdhury, A.Z.; Islam, S.; Gaquiere, C.; Crupi, G. Temperature-Sensitivity of Two Microwave HEMT Devices: AlGaAs/GaAs vs. AlGaN/GaN Heterostructures. Electronics 2021, 10, 1115. [Google Scholar] [CrossRef]
- Ma, Y.; Li, B.; Wu, Z.; Wu, H.; Chen, Z. A Co-simulation Method of Power Amplifier for Reliability Optimization. In Proceedings of the IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), Shenzhen, China, 6–8 June 2018; pp. 1–2. [Google Scholar]
- Lai, S.F.; Tam, W.S.; Kok, C.W.; Ng, L.T.; Wong, H. Quiescent Current Control for Low Distortion Linear Power Amplifier. In Proceedings of the IEEE Region 10 Conference, Macao, China, 1–4 November 2015; pp. 1–2. [Google Scholar]
- Hassan, Z.; Allec, N.; Fan, Y.; Li, S.; Xuan, Z. Full-Spectrum Spatial–Temporal Dynamic Thermal Analysis for Nanometer-Scale Integrated Circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 2276–2289. [Google Scholar] [CrossRef]
- Sun, X.; Gao, H.; Li, G.P.; Sun, W. Peripheral Adaption Power Cell Network for High Efficiency and High Linearity Power Amplifier. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 799–801. [Google Scholar] [CrossRef]
- Tam, W.S.; Wong, O.Y.; Kok, C.W.; Wong, H. A Low Power Temperature Insensitive Voltage Supervisory Circuit in Metal Gate Technology. In Proceedings of the IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Xi’an, China, 25–27 December 2009; pp. 437–438. [Google Scholar]
- Souliotis, G.; Plessas, F.; Vlassis, S. A High Accuracy Voltage Reference Generator. Microelectron. J. 2018, 75, 61–67. [Google Scholar] [CrossRef]
- Crupi, F.; Rose, D.R.; Paliy, M.; Lanuzza, M.; Perna, M.; Iannaccone, G. A Portable Class of 3-Transistor Current References with Low-Power Sub-0.5 V Operation. Int. J. Circuit Theory Appl. 2018, 46, 779–795. [Google Scholar] [CrossRef]
- Ramos, F.R.; Mussolini, T.P.; Moreno, R.L.; Pimenta, T.C. A CMOS Temperature-independent Current Reference Optimized for Mixed-Signal Applications. Integration 2019, 66, 88–95. [Google Scholar] [CrossRef]
- Yang, B.D.; Shin, Y.K.; Lee, J.S.; Lee, Y.K.; Ryu, K.C. An Accurate Current Reference Using Temperature and Process Compensation Current Mirror. In Proceedings of the IEEE Asian Solid-State Circuits Conference, Taipei, China, 16–18 November 2009; pp. 241–242. [Google Scholar]
- Maxim Integrated. DS2741, Current Monitor and Accumulator with Integrated Sense Resistor Datasheet. 2009. Available online: http://datasheets.maximintegrated.com/en/ds/DS2741.pdf (accessed on 1 July 2009).
- Tetsuya, H.; Toshimasa, M.; Kenji, T.; Tetsuya, A.; Yoshihito, A. Ultralow-Power Current Reference Circuit with Low Temperature Dependence. IEICE Trans. Electron. 2005, 88, 1142–1147. [Google Scholar]
- Tam, W.S.; Wong, O.Y.; Kok, C.W.; Wong, H. Generating Sub-1V Reference Voltages from a Resistorless CMOS Bandgap Reference Circuit by Using a Piecewise Curvature Temperature Compensation Technique. Microelectron. Reliab. 2010, 50, 1054–1061. [Google Scholar] [CrossRef]
- Perpina, X.; Reverter, F.; Leon, J.; Barajas, E.; Vellvehi, M.; Jorda, X.; Altet, J. Output Power and Gain Monitoring in RF CMOS Class A Power Amplifiers by Thermal Imaging. IEEE Trans. Instrum. Meas. 2019, 68, 2861–2870. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Lin, Q.; Wu, H.; Wang, X. Performance Degradation Investigation for a GaAs PHEMT High Gain MMIC PA Taking into Account the Temperature. Electronics 2022, 11, 1669. [Google Scholar] [CrossRef]
- Hollstein, K.; Yang, X.; Weide-Zaage, K. Thermal Analysis of the Design Parameters of a QFN Package Soldered on a PCB Using a Simulation Approach. Microelectron. Reliab. 2021, 120, 114–118. [Google Scholar] [CrossRef]
- Lu, T.; Jin, J. Electrical-Thermal Co-Simulation for Analysis of High-Power RF/Microwave Components. IEEE Trans. Electromagn. Compat. 2016, 59, 93–102. [Google Scholar] [CrossRef]
- Kone, G.A.; Grandchamp, B.; Hainaut, C.; Marc, F.; Maneux, C.; Labat, N.; Zimmer, T.; Nodjiadjim, V.; Riet, M.; Godin, J. Reliability of Submicron InGaAs/InP DHBT Under Thermal and Electrical Stresses. Microelectron. Reliab. 2011, 51, 1730–1738. [Google Scholar] [CrossRef]
- Filippis, S.D.; Kosel, V.; Dibra, D.; Decker, S.; Koeck, H.; Irace, A. ANSYS Based 3D Electro-Thermal Simulations for the Evaluation of Power MOSFETs Robustness. Microelectron. Reliab. 2011, 51, 1954–1958. [Google Scholar] [CrossRef]
- Ozalas, M.T. The Impact of Electro-Thermal Coupling on HBT Power Amplifiers. In Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 19–22 October 2014; pp. 1–2. [Google Scholar]
- Korndorfer, F.; Datsuk, A.; Kaynak, M. Layout Based Electro-Thermal Simulation Setup. In Proceedings of the IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Anaheim, CA, USA, 14–17 January 2018; pp. 68–69. [Google Scholar]
- Mehta, K.; Liu, Y.S.; Wang, J.; Jeong, H.; Yoder, P.D. Thermal Design Considerations for III-N Vertical-Cavity Surface-Emitting Lasers Using Electro-Opto-Thermal Numerical Simulations. IEEE J. Quantum Electron. 2019, 55, 1. [Google Scholar] [CrossRef]
- Yu, W.; Zhuang, H.; Zhang, C.; Hu, G.; Liu, Z. RWCap: A Floating Random Walk Solver for 3-D Capacitance Extraction of Very-Large-Scale Integration Interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 353–366. [Google Scholar] [CrossRef]
- Chen, Z.; Wong, H.; Yan, H.; Dong, S.; Yang, B.L. Temperature Dependences of Threshold Voltage and Drain-Induced Barrier Lowering in 60 nm Gate Length MOS Transistors. Microelectron. Reliab. 2014, 54, 1109–1114. [Google Scholar] [CrossRef]
- D’Alessandro, V.; Catalano, A.P.; Scognamillo, C.; Codecasa, L.; Zampardi, P. Analysis of Electrothermal Effects in Devices and Arrays in InGaP/GaAs HBT Technology. Electronics 2021, 10, 757. [Google Scholar] [CrossRef]
This Work | [14] | [15] | [16] | [17] | [18] | |
---|---|---|---|---|---|---|
Current (A) | 1.4 m | 99.7 μ | 0.338 μ | 20 μ | 16.6 μ | 2.5 |
ΔT (°C) | −15~85 | −40~125 | 0~80 | −40~80 | −20~100 | −20~70 |
Accuracy (%) | 3.5% | 3.5% | 3.1% | 10% | 4% | 2% |
Process | 0.5μm GaAs | 65 nm CMOS | 0.18 μm CMOS | 0.35 μm CMOS | 0.35 μm CMOS | N/A CMOS |
Area (mm2) | 0.035 | 0.04 | 0.00075 | 0.139 | 0.0576 | 9(package) |
Trimming bits | 3 | No | No | 5 | 18 | 7 |
Devices (μm) | D1:2 × 4; HBT:2 × 20 × 2 |
Parameters | Measured Condition | ||
---|---|---|---|
−15 °C | 25 °C | 85 °C | |
−ACPR (dBc) | −55.01 | −50.28 | −46.12 |
+ACPR (dBc) | −56.13 | −51.07 | −46.90 |
EVM (%) | 2.6 | 3.1 | 3.7 |
No. | Condition | PG (dB) | PAE (%) | PO (dBm) | Error(%) | |
---|---|---|---|---|---|---|
Measured results | 1 | −15 °C | 9.735 | 51.017 | 31.73 | |
2 | 25 °C | 8. 83 | 48.10 | 30.85 | ||
3 | 85 °C | 8.45 | 44.38 | 30.45 | ||
Simulation results without thermal model | 4 | −15 °C, r = 491 Ω/W | 9.96 | 53.53 | 31.96 | |
5 | 25 °C, r = 0 | 9.30 | 50.73 | 31.39 | ||
6 | 85 °C, r = 740 Ω/W | 7.95 | 43.75 | 29.95 | ||
5.91% | 1.45% | 1.64% | (3−6)/3 | |||
Co-simulation results | 7 | 85 °C, r0(i, j) | 8.46 | 44.41 | 30.46 | |
0.73% | 0.97% | 0.20% | (3–7)/3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wu, Z.; Li, B. A Multi-Source Co-Simulation Method for the Thermal Stability of GaAs Sub-6G Power Amplifier with Adjustable Bias Current. Electronics 2022, 11, 2000. https://doi.org/10.3390/electronics11132000
Ma Y, Wu Z, Li B. A Multi-Source Co-Simulation Method for the Thermal Stability of GaAs Sub-6G Power Amplifier with Adjustable Bias Current. Electronics. 2022; 11(13):2000. https://doi.org/10.3390/electronics11132000
Chicago/Turabian StyleMa, Yuanbo, Zhaohui Wu, and Bin Li. 2022. "A Multi-Source Co-Simulation Method for the Thermal Stability of GaAs Sub-6G Power Amplifier with Adjustable Bias Current" Electronics 11, no. 13: 2000. https://doi.org/10.3390/electronics11132000
APA StyleMa, Y., Wu, Z., & Li, B. (2022). A Multi-Source Co-Simulation Method for the Thermal Stability of GaAs Sub-6G Power Amplifier with Adjustable Bias Current. Electronics, 11(13), 2000. https://doi.org/10.3390/electronics11132000