Optimal Placement of UDAP in Advanced Metering Infrastructure for Smart Metering of Electrical Energy Based on Graph Theory
Abstract
:1. Introduction
2. Related Work
3. Problem Formulation
3.1. Proposed Strategy and Methodology
3.2. Proposed Solution
Algorithm 1 Main: Optimal Routing & Optimal # . |
Input:, , CapU, dmax Output:, path Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: for while endwhile endfor Step 7: Return: , path |
Algorithm 2 calc_base_tree (pre-selection of ). |
Input:, CapU, dmax Output: Step 1: Longitude = SM; Latitude = SM; Step 2: while < & ; flag=1 while flag==1 for for if endif endfor endfor if (dist is minimum) , index(minimum dist)] path = [path,path(minimum dist)+1] else endif if length(SM>Cap) endif endwhile endwhile Step 3: Return: |
4. Analysis of Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kabalci, Y. A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 2016, 57, 302–318. [Google Scholar] [CrossRef]
- Baimel, D.; Tapuchi, S.; Baimel, N. Smart grid communication technologies—Overview, research challenges and opportunities. In Proceedings of the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, Capri, Italy, 22–24 June 2016; pp. 116–120. [Google Scholar] [CrossRef]
- Parvez, I.; Islam, N.; Rupasinghe, N.; Sarwat, A.I.; Guvenc, I. LAA-based LTE and ZigBee coexistence for unlicensed-band smart grid communications. In Proceedings of the IEEE SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016. [Google Scholar] [CrossRef]
- Şahin, M.E.; Guvenc, I.; Arslan, H. An iterative interference cancellation method for co-channel multicarrier and narrowband systems. Phys. Commun. 2011, 4, 13–25. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, X.; Linnartz, J.P.M. A Coexistence Model of IEEE 802.15.4 and IEEE 802.1 lbIg. In Proceedings of the 2007 14th IEEE Symposium on Communications and Vehicular Technology in the Benelux, Delft, The Netherlands, 15 November 2007; pp. 2–6. [Google Scholar]
- Zacharias, S.; Newe, T.; O’Keeffe, S.; Lewis, E. Coexistence measurements and analysis of IEEE 802.15.4 with Wi-Fi and bluetooth for vehicle networks. In Proceedings of the 2012 12th International Conference on ITS Telecommunications, ITST 2012, Taipei, Taiwan, 5–8 November 2012; pp. 785–790. [Google Scholar] [CrossRef]
- Chöliz, J.; Hernández-Solana, Á.; Sierra, A.; Cluzeaud, P. Coexistence of MB-OFDM UWB with impulse radio UWB and other radio systems. In Proceedings of the 2011 IEEE International Conference on Ultra-Wideband (ICUWB), Bologna, Italy, 14–16 September 2011; pp. 410–414. [Google Scholar] [CrossRef]
- Rahim, A.; Zeisberg, S.; Finger, A. Coexistence study between UWB and WiMax at 3.5 GHz band. In Proceedings of the 2007 IEEE International Conference on Ultra-Wideband, Singapore, 24–26 September 2007; pp. 915–920. [Google Scholar] [CrossRef]
- Çelebi, M.B.; Güvenç, I.; Arslan, H.; Qaraqe, K.A. Interference suppression for the LTE uplink. Phys. Commun. 2013, 9, 23–44. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Ying, Y.; Huang, J.; Winter, R.M. Data Aggregation Point Placement Problem in Neighborhood Area Networks of Smart Grid. Mob. Netw. Appl. 2018, 23, 1572–8153. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Huang, J.; Duan, Q.; Li, J. A K-means-based Network Partition Algorithm for Controller Placement in Software Defined Network. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar] [CrossRef]
- B, G.W.; Zhao, Y.; Ying, Y.; Huang, J.; Winter, R.M. A Clustering Algorithm for the DAP Placement Problem in Smart Grid. Adv. Hybrid Inf. Process. 2018, 219, 349–359. [Google Scholar] [CrossRef]
- Hassan, A.; Zhao, Y.; Pu, L.; Wang, G.; Sun, H.; Winter, R.M. Evaluation of Clustering Algorithms for DAP Placement in Wireless Smart Meter Network. In Proceedings of the 2017 9th International Conference on Modelling, Identification and Control (ICMIC), Kunming, China, 10–12 July 2017; pp. 1085–1090. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Huang, J.; Winter, R.M. On the Data Aggregation Point Placement in Smart Meter Networks. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017. [Google Scholar]
- Gallardo, J.L.; Ahmed, M.A.; Jara, N. Clustering algorithm-based network planning for advanced metering infrastructure in smart grid. IEEE Access 2021, 9, 48992–49006. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, H. A grid-based reliable multi-hop routing protocol for energy-efficient wireless sensor networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718765962. [Google Scholar] [CrossRef] [Green Version]
- Goyal, N.; Kumar, A.; Popli, R.; Awasthi, L.K.; Sharma, N.; Sharma, G. Priority based data gathering using multiple mobile sinks in cluster based UWSNs for oil pipeline leakage detection. Clust. Comput. 2022, 25, 1341–1354. [Google Scholar] [CrossRef]
- Goyal, N.; Dave, M.; Verma, A.K. Adaptive error control technique for cluster-based underwater wireless sensor networks. In International Conference on Wireless Intelligent and Distributed Environment for Communication; Springer: Cham, Switzerland, 2018; pp. 269–280. [Google Scholar] [CrossRef]
- Nasir, T.; Bukhari, S.S.H.; Raza, S.; Munir, H.M.; Abrar, M.; Muqeet, H.A.U.; Bhatti, K.L.; Ro, J.S.; Masroor, R. Recent Challenges and Methodologies in Smart Grid Demand Side Management: State-of-the-Art Literature Review. Math. Probl. Eng. 2021, 2021, 5821301. [Google Scholar] [CrossRef]
- Omitaomu, O.A.; Niu, H. Artificial intelligence techniques in smart grid: A survey. Smart Cities 2021, 4, 548–568. [Google Scholar] [CrossRef]
- Rhim, H.; Tamine, K.; Abassi, R.; Sauveron, D.; Guemara, S. A multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networks. Hum.-Centric Comput. Inf. Sci. 2018, 8, 1–21. [Google Scholar] [CrossRef]
- Mehrjoo, S.; Khunjush, F. Optimal data aggregation tree in wireless sensor networks based on improved river formation dynamics. Comput. Intell. 2018, 34, 802–820. [Google Scholar] [CrossRef]
- Kiedrowski, P. Selection of the optimal smart meter to act as a data concentrator with the use of graph theory. Entropy 2021, 23, 658. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Z.; Zhong, Y.; Zhu, H.; Zhang, P. End-to-end data collection strategy using mobile sink in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2022, 18, 155013292210779. [Google Scholar] [CrossRef]
- Mezher, A.M.; Enrique, P.; Rivera, I.; Lester, C.; Santos, D.; Meng, J. Optimization of Key Devices Positions in Large-Scale RF Mesh Networks. In Proceedings of the 16th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, Miami Beach, FL, USA, 25–29 November 2019; pp. 67–72. [Google Scholar] [CrossRef] [Green Version]
- Popović, I.; Rakić, A.; Petruševski, I.D. Multi-Agent Real-Time Advanced Metering Infrastructure Based on Fog Computing. Energies 2022, 15, 373. [Google Scholar] [CrossRef]
- Hassan, A.; Afrouzi, H.N.; Siang, C.H.; Ahmed, J.; Mehranzamir, K.; Wooi, C.L. A survey and bibliometric analysis of different communication technologies available for smart meters. Clean. Eng. Technol. 2022, 7, 100424. [Google Scholar] [CrossRef]
- Inga, E.; Inga, J.; Ortega, A. Novel approach sizing and routing of wireless sensor networks for applications in smart cities. Sensors 2021, 21, 4692. [Google Scholar] [CrossRef]
- Nasri, M.; Lamiri, A.; Maaref, H.; Mghaieth, R. Adaptive dynamic multi-hop technique for clustering protocol in wireless sensor networks assisted-Internet of Things applications. IET Netw. 2022, 11, 27–41. [Google Scholar] [CrossRef]
- Yue, J.; Zhang, W.; Xiao, W.; Tang, D.; Tang, J. Energy efficient and balanced cluster-based data aggregation algorithm for wireless sensor networks. Procedia Eng. 2012, 29, 2009–2015. [Google Scholar] [CrossRef] [Green Version]
- Inga, E.; Cespedes, S.; Hincapie, R.; Cardenas, C.A. Scalable Route Map for Advanced Metering Infrastructure Based on Optimal Routing of Wireless Heterogeneous Networks. IEEE Wirel. Commun. 2017, 24, 26–33. [Google Scholar] [CrossRef]
- Sennan, S.; Balasubramaniyam, S.; Luhach, A.K. Energy and Delay Aware Data Aggregation in routing protocol for Internet of Things. Sensors 2019, 19, 5486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, M.; Leung, K. Efficient data aggregation and transport in wireless sensor networks. Wirel. Commun. Mob. Comput. 2009, 1, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Abdellatif, S.; Gayraud, T.; Berthou, P. A Steiner tree based approach for the efficient support of multipoint communications in a multi-domain context. In Proceedings of the IEEE Symposium on Computers and Communications, Heraklion, Greece, 3–6 July 2017; pp. 316–321. [Google Scholar] [CrossRef]
- Younis, M.; Waknis, R. Connectivity restoration in wireless sensor networks using steiner tree approximations. In Proceedings of the IEEE Global Telecommunications Conference GLOBECOM, Miami, FL, USA, 6–10 December 2010. [Google Scholar] [CrossRef]
- Homaei, M.H.; Salwana, E.; Shamshirband, S. An enhanced distributed data aggregation method in the internet of things. Sensors 2019, 19, 3173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inga, E.; Hincapié, R.; Céspedes, S. Capacitated Multicommodity Flow Problem for Heterogeneous Smart Electricity Metering Communications Using Column Generation. Energies 2019, 13, 97. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, X. Aggregation tree based data aggregation algorithm in wireless sensor networks. Int. J. Online Eng. 2016, 12, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Rout, R.R.; Ghosh, S.K. Adaptive data aggregation and energy efficiency using network coding in a clustered wireless sensor network: An analytical approach. Comput. Commun. 2014, 40, 65–75. [Google Scholar] [CrossRef]
- Park, S.J.; Sivakumar, R. Energy efficient correlated data aggregation for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2008, 4, 13–27. [Google Scholar] [CrossRef]
- Mohanty, P.; Kabat, M.R. Energy efficient structure-free data aggregation and delivery in WSN. Egypt. Inform. J. 2016, 17, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, N.; Karmaker, A.; Lambert, W.L.; Alam, M.S.; Shawkat, M.S.A. Minimizing the energy hole problem in wireless sensor networks: A wedge merging approach. Sensors 2020, 20, 277. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Lee, K.; Park, J.S.; Baek, S.J. Minimum cost data aggregation for wireless sensor networks computing functions of sensed data. J. Sens. 2015, 2015, 506909. [Google Scholar] [CrossRef]
- Robert singh, A.; Devaraj, D.; Narmatha Banu, R. Genetic algorithm-based optimisation of load-balanced routing for AMI with wireless mesh networks. Appl. Soft Comput. J. 2019, 74, 122–132. [Google Scholar] [CrossRef]
- Leonori, S.; Paschero, M.; Frattale Mascioli, F.M.; Rizzi, A. Optimization strategies for Microgrid energy management systems by Genetic Algorithms. Appl. Soft Comput. J. 2020, 86, 105903. [Google Scholar] [CrossRef]
- Ganán, C.; Inga, E.; Hincapié, R. Óptimo despliegue y enrutamiento de UDAP para infraestructura de medición avanzada basada en el algoritmo MST Optimal deployment and routing geographic of UDAP for advanced metering infrastructure based on MST algorithm. Rev. Chil. Ing. 2017, 25, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Téllez Gutiérrez, S.M.; Rosero García, J.; Céspedes Gandarillas, R. Sistemas de medición avanzada en Colombia: Beneficios, retos y oportunidades. Ing. Y Desarro. 2018, 36, 469–488. [Google Scholar] [CrossRef]
- Inga-ortega, E.; Peralta-Sevilla, A.; Hincapié, R.; Amaya, F.; Tafur, I. Optimal Dimensioning of FiWi Networks over Advanced Metering Infrastructure for the Smart Grid. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; pp. 30–35. [Google Scholar] [CrossRef]
- Inga, E.; Hincapie, R. Matched Channel Allocation for Advanced Metering Infrastructure based on Cognitive Mobile Virtual Network Operator. IEEE Lat. Am. Trans. 2016, 14, 1780–1785. [Google Scholar] [CrossRef]
Feature | LoRa | SigFox | ZigBee | Z-Wave | Wifi | NB-IoT |
---|---|---|---|---|---|---|
Interference Tolerance | Very High | Very High | High | High | Medium | Low |
Sensibility | −168 dBm | −126 dBm | 2.4 GHz band: −85 dBm 865/915 MHz band: −92 dBm | 2.4 GHz band: −85 dBm 2.4 GHz band: −85 dBm | −94 dBm to −71 dBm | −141 dBm |
Modulation | CSS | BPSK | OQPSK and BPSK | OQPSK and BPSK QPSK, BPSK | OFDMA, OFDM, QAM | QPSK |
Energy Consumption | Low 2 mW | Medium 158–500 mW | Low 1 mW | Low 1 mW | High 1 W | Medium 710–840 mW |
Span | Urban: 5 km Rural: 20 km | Urban: 10 km Rural: 40 km | 10 m to 75 m | Up to 100 m | wifiA(802.11a): 10 m to 70 m wifiB(802.11b): 50 m to 500 m wifiG(802.11g): 27 m to 400 m | Urban: 1 km Rural: 10 km |
Connection | Half-duplex | Limited Half-duplex | Half-duplex | Half-duplex | Half-duplex | Half-duplex |
Work Frequency | America: 915 MHz Europe: 868 MHz Asia: 433 MHz | Europe: 868 MHz and 868 MHz Rest of the world: 902 MHz and 928 MHz | America: 915 MHz Europe: 868 MHz Rest of the world: 2.4 GHz | Europe: 868.40/868.42/869.85 MHz America: 908.4/908.42/916 MHz | wifiA(802.11a): 5 GHz wifiB(802.11b): 2.4 GHz wifiG(802.11g): 2.4 GHz | LTE licenced bands |
Bandwidth | 250 kHz and 125 kHz | 100 Hz | 2 MHz | 300 kHz and 400 kHz | 22 MHz | 195 kHz |
Baud Rate | 0.3 to 50 kbps | 100 bps | 40 to 250 kbps | 9.6 to 100 kbps | wifiA(802.11a): Up to 54 Mbps wifiB(802.11b): Up to 11 Mbps wifiG(802.11g): Up to 54 Mbps | 200 kbps |
Battery Lifetime | >10 years | >14 years | up to 10 years | up to 5 years | 5 to 10 years | >10 years |
Scientific Paper | Problem | Constraints | Proposal | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Author | Energy Efficiency | Data Collection | Scalability | UDAP Placement | Multi-Hop | Capacity | Coverage | Cost | Clustering–Conglomerate | Minimum Expanding Tree | Energy Consumption |
Wang et al., 2016 [12] | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ||
Chen et al., 2017 [35] | ✠ | ✠ | ✠ | ✠ | |||||||
Wang et al., 2017 [15] | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ||
Wang et al., 2018 [11] | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ||
Mehrjoo et al., 2018 [23] | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | |||||
Rhim et al., 2018 [22] | ✠ | ✠ | ✠ | ✠ | ✠ | ||||||
Kiedrowski et al., 2021 [24] | ✠ | ✠ | ✠ | ✠ | ✠ | ||||||
Gallardo et al., 2021 [16] | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ||||
Wu et al., 2022 [25] | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ||||
Current Work | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ | ✠ |
Nomenclature | Description |
---|---|
Distances matrix (SM–UDAP–BS) | |
Wireless links | |
UDAPs maximum capacity | |
Optimal number of UDAPs | |
Smart meter | |
N | Number of SMs |
M | Number of optimal UDAPs |
K | Number of BSs |
Number of hops | |
Set of candidate sites and | |
SM latitude and longitude coordinates | |
Set of links | |
Nomenclature | Algorithm |
Base station latitude and longitude coordinates | |
Maximum distance of connection of the IoT technology | |
Connection path for all devices | |
Optimal spanning tree georeferenced location | |
G | Connectivity matrix of SM–UDAP–BS |
Connection cost matrix | |
D | Distance matrix |
Connection links of SM–UDAP–BS |
UDAPs Capacity | Wireless Ratio (m) | Max. Number of Hops | Maximum Path Distance (km) | Average Distance between Hops (km) |
---|---|---|---|---|
5 | 80 | 8 | 1.3737 | 0.3070 |
10 | 20 | 11 | 1.8156 | 0.2941 |
15 | 30 | 12 | 2.9248 | 0.6639 |
15 | 50 | 7 | 1.7221 | 0.4532 |
20 | 40 | 8 | 1.7803 | 0.5763 |
20 | 60 | 6 | 1.2237 | 0.3933 |
25 | 70 | 6 | 0.9910 | 0.3435 |
25 | 10 | 5 | 0.4130 | 0.0205 |
30 | 10 | 5 | 0.4130 | 0.0188 |
30 | 20 | 15 | 3.0482 | 0.2887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, L.; Inga, E. Optimal Placement of UDAP in Advanced Metering Infrastructure for Smart Metering of Electrical Energy Based on Graph Theory. Electronics 2022, 11, 1767. https://doi.org/10.3390/electronics11111767
Machado L, Inga E. Optimal Placement of UDAP in Advanced Metering Infrastructure for Smart Metering of Electrical Energy Based on Graph Theory. Electronics. 2022; 11(11):1767. https://doi.org/10.3390/electronics11111767
Chicago/Turabian StyleMachado, Luis, and Esteban Inga. 2022. "Optimal Placement of UDAP in Advanced Metering Infrastructure for Smart Metering of Electrical Energy Based on Graph Theory" Electronics 11, no. 11: 1767. https://doi.org/10.3390/electronics11111767
APA StyleMachado, L., & Inga, E. (2022). Optimal Placement of UDAP in Advanced Metering Infrastructure for Smart Metering of Electrical Energy Based on Graph Theory. Electronics, 11(11), 1767. https://doi.org/10.3390/electronics11111767