Chemical Wave Computing from Labware to Electrical Systems
Abstract
:1. Introduction
2. Chemical Wave Computing
3. Memristive Hardware Implementation of Chemical Wave Computing
3.1. Implementing Reaction-Diffusion Dynamics on Memristor-Based LSI
3.1.1. 1-D Reaction-Diffusion Medium with Memristors
3.1.2. 2-D Reaction-Diffusion Medium with Memristors
3.2. M-RLC Circuit Equivalent of a Chemical Medium
3.2.1. Wave Gates Implementation
3.2.2. An Alternative Approach
3.3. Memristive CA Cell for a Chemical Medium Representation
3.3.1. MemCA Chemical Gates
3.3.2. Area Optimization
3.4. MemRC Oscillator for Chemical Wave Propagation Modeling
3.4.1. Topological Boolean Gates
3.4.2. Multifunctional Gate
4. Discussion & Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Banzhaf, W.; Dittrich, P.; Rauhe, H. Emergent computation by catalytic reactions. Nanotechnology 1996, 7, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Adamatzky, A.; Costello, B.D.L.; Asai, T. Reaction-Diffusion Computers; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Mikhailov, A.S.; Showalter, K. Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 2006, 425, 79–194. [Google Scholar] [CrossRef]
- Gorecki, J.; Gizynski, K.; Guzowski, J.; Gorecka, J.N.; Garstecki, P.; Gruenert, G.; Dittrich, P. Chemical computing with reaction—Diffusion processes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentili, P.L.; Giubila, M.S.; Germani, R.; Heron, B.M. Photochromic and luminescent compounds as artificial neuron models. Dyes Pigment. 2018, 156, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Dueñas-Díez, M.; Pérez-Mercader, J. How chemistry computes: Language recognition by non-biochemical chemical automata. From finite automata to turing machines. Iscience 2019, 19, 514–526. [Google Scholar] [CrossRef] [Green Version]
- Foulon, B.L.; Liu, Y.; Rosenstein, J.K.; Rubenstein, B.M. A Language for Molecular Computation. Chem 2019, 5, 3017–3019. [Google Scholar] [CrossRef]
- Dueñas-Díez, M.; Pérez-Mercader, J. In-vitro reconfigurability of native chemical automata, the inclusiveness of their hierarchy and their thermodynamics. Sci. Rep. 2020, 10, 6814. [Google Scholar] [CrossRef] [Green Version]
- Bose, A.; Gorecki, J. Computing With Networks of Chemical Oscillators and its Application for Schizophrenia Diagnosis. Front. Chem. 2022, 10, 848685. [Google Scholar] [CrossRef]
- Egbert, M.D.; Gruenert, G.; Ibrahim, B.; Dittrich, P. Combining evolution and self-organization to find natural Boolean representations in unconventional computational media. Biosystems 2019, 184, 104011. [Google Scholar] [CrossRef]
- Dueñas-Díez, M.; Pérez-Mercader, J. Native Chemical Computation. A Generic Application of Oscillating Chemistry Illustrated With the Belousov-Zhabotinsky Reaction. A Review. Front. Chem. 2021, 9, 611120. [Google Scholar] [CrossRef]
- Parrilla-Gutierrez, J.M.; Sharma, A.; Tsuda, S.; Cooper, G.J.; Aragon-Camarasa, G.; Donkers, K.; Cronin, L. A programmable chemical computer with memory and pattern recognition. Nat. Commun. 2020, 11, 1442. [Google Scholar] [CrossRef] [PubMed]
- Przyczyna, D.; Zawal, P.; Mazur, T.; Strzelecki, M.; Gentili, P.L.; Szaciłowski, K. In-materio neuromimetic devices: Dynamics, information processing and pattern recognition. Jpn. J. Appl. Phys. 2020, 59, 050504. [Google Scholar] [CrossRef] [Green Version]
- Zaikin, A.; Zhabotinsky, A. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 1970, 225, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Zhabotinsky, A.; Zaikin, A. Autowave processes in a distributed chemical system. J. Theor. Biol. 1973, 40, 45–61. [Google Scholar] [CrossRef]
- Winfree, A.T. The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ. 1984, 61, 661–663. [Google Scholar] [CrossRef]
- Pechenkin, A. On the Origin of the Belousov-Zhabotinsky Reaction. Biol. Theory 2006, 4, 196–206. [Google Scholar] [CrossRef]
- Kiprijanov, K.S. Chaos and beauty in a beaker: The early history of the Belousov-Zhabotinsky reaction. Ann. Der Phys. 2016, 528, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, A.S.; Ertl, G. The Belousov–Zhabotinsky Reaction. In Chemical Complexity: Self-Organization Processes in Molecular Systems; Springer International Publishing: Cham, Switzerland, 2017; pp. 89–103. [Google Scholar]
- Bartolomei, B.; Heron, B.M.; Gentili, P.L. A contribution to neuromorphic engineering: Neuromodulation implemented through photochromic compounds maintained out of equilibrium by UV–visible radiation. Rend. Lincei Sci. Fis. Nat. 2020, 31, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Adamatzky, A. Collision-based computing in Belousov–Zhabotinsky medium. Chaos Solitons Fractals 2004, 21, 1259–1264. [Google Scholar] [CrossRef]
- Igarashi, Y.; Gorecki, J. Chemical Diodes Built with Controlled Excitable Media. Int. J. Unconv. Comput. 2011, 7, 141–158. [Google Scholar]
- Steinbock, O.; Kettunen, P.; Showalter, K. Chemical wave logic gates. J. Phys. Chem. 1996, 100, 18970–18975. [Google Scholar] [CrossRef]
- Sielewiesiuk, J.; Górecki, J. Logical functions of a cross junction of excitable chemical media. J. Phys. Chem. A 2001, 105, 8189–8195. [Google Scholar] [CrossRef]
- Egbert, M.; Gagnon, J.S.; Pérez-Mercader, J. From chemical soup to computing circuit: Transforming a contiguous chemical medium into a logic gate network by modulating its external conditions. J. R. Soc. Interface 2019, 16, 20190190. [Google Scholar] [CrossRef] [Green Version]
- Gorecki, J.; Yoshikawa, K.; Igarashi, Y. On chemical reactors that can count. J. Phys. Chem. A 2003, 107, 1664–1669. [Google Scholar] [CrossRef]
- Sun, M.Z.; Zhao, X. Multi-bit binary decoder based on Belousov-Zhabotinsky reaction. J. Chem. Phys. 2013, 138, 114106. [Google Scholar] [CrossRef]
- Zhang, G.M.; Wong, I.; Chou, M.T.; Zhao, X. Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction. J. Chem. Phys. 2012, 136, 164108. [Google Scholar] [CrossRef]
- Sun, M.Z.; Zhao, X. Crossover Structures for Logical Computations in Excitable Chemical Medium. Int. J. Unconv. Comput. 2015, 11, 165–184. [Google Scholar]
- Guo, S.; Sun, M.Z.; Han, J.D.; Zhao, X. Digital Comparator in Excitable Chemical Media. Int. J. Unconv. Comput. 2015, 11, 131–145. [Google Scholar]
- Stovold, J.; O’Keefe, S. Reaction–diffusion chemistry implementation of associative memory neural network. Int. J. Parallel Emergent Distrib. Syst. 2017, 32, 74–94. [Google Scholar] [CrossRef]
- Stovold, J.; O’Keefe, S. Associative Memory in Reaction-Diffusion Chemistry. In Advances in Unconventional Computing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 141–166. [Google Scholar]
- Gorecki, J.; Gorecka, J.N. Information Processing with Chemical Excitations–from Instant Machines to an Artificial Chemical Brain. Int. J. Unconv. Comput. 2006, 2, 321–336. [Google Scholar]
- Gentili, P.L.; Horvath, V.; Vanag, V.K.; Epstein, I.R. Belousov-Zhabotinsky “Chemical Neuron” as a Binary and Fuzzy Logic Processor. Int. J. Unconv. Comput. 2012, 8, 177–192. [Google Scholar]
- Takigawa-Imamura, H.; Motoike, I.N. Dendritic gates for signal integration with excitability-dependent responsiveness. Neural Netw. 2011, 24, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stovold, J.; O’Keefe, S. Simulating neurons in reaction-diffusion chemistry. In International Conference on Information Processing in Cells and Tissues; Springer: Berlin/Heidelberg, Germany, 2012; pp. 143–149. [Google Scholar]
- Gruenert, G.; Gizynski, K.; Escuela, G.; Ibrahim, B.; Gorecki, J.; Dittrich, P. Understanding networks of computing chemical droplet neurons based on information flow. Int. J. Neural Syst. 2015, 25, 1450032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallphanov, I.L.; Vanag, V.K. Chemical micro-oscillators based on the Belousov–Zhabotinsky reaction. Russ. Chem. Rev. 2021, 90, 1263. [Google Scholar] [CrossRef]
- Kuhnert, L.; Agladze, K.; Krinsky, V. Image processing using light-sensitive chemical waves. Nature 1989, 337, 244. [Google Scholar] [CrossRef]
- Rambidi, N.; Kuular, T.O.; Makhaeva, E. Information-processing capabilities of chemical reaction–diffusion systems. 1. Belousov–Zhabotinsky media in hydrogel matrices and on solid supports. Adv. Mater. Opt. Electron. 1998, 8, 163–171. [Google Scholar] [CrossRef]
- Rambidi, N.; Shamayaev, K.; Peshkov, G.Y. Image processing using light-sensitive chemical waves. Phys. Lett. A 2002, 298, 375–382. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Yuan, C.; Wang, H.; Fu, D. Intelligent image sensor based on probing the evolution of redox potentials distributed in reaction–diffusion medium. Sens. Actuators B Chem. 2010, 145, 285–292. [Google Scholar] [CrossRef]
- Adamatzky, A. Computing in Nonlinear Media and Automata Collectives; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kuhnert, L. A new optical photochemical memory device in a light-sensitive chemical active medium. Nature 1986, 319, 393. [Google Scholar] [CrossRef]
- Adamatzky, A.; Tsompanas, M.A.; Draper, T.C.; Fullarton, C.; Mayne, R. Liquid Marble Photosensor. ChemPhysChem 2020, 21, 90–98. [Google Scholar] [CrossRef]
- Tsompanas, M.A.; Fyrigos, I.A.; Ntinas, V.; Adamatzky, A.; Sirakoulis, G.C. Light sensitive Belousov-Zhabotinsky medium accommodates multiple logic gates. BioSystems 2021, 206, 104447. [Google Scholar] [CrossRef] [PubMed]
- Pullela, S.R.; Cristancho, D.; He, P.; Luo, D.; Hall, K.R.; Cheng, Z. Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 2009, 11, 4236–4243. [Google Scholar] [CrossRef] [PubMed]
- Adamatzky, A.; Fullarton, C.; Phillips, N.; De Lacy Costello, B.; Draper, T.C. Thermal switch of oscillation frequency in Belousov–Zhabotinsky liquid marbles. R. Soc. Open Sci. 2019, 6, 190078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoi, H.; Adamatzky, A.; de Lacy Costello, B.; Melhuish, C. Excitable chemical medium controller for a robotic hand: Closed-loop experiments. Int. J. Bifurc. Chaos 2004, 14, 3347–3354. [Google Scholar] [CrossRef]
- Field, R.J.; Noyes, R.M. Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 1974, 60, 1877–1884. [Google Scholar] [CrossRef] [Green Version]
- Beato, V.; Engel, H. Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise. In Proceedings of the SPIE’s First International Symposium on Fluctuations and Noise, Santa Fe, NM, USA, 1 June 2003; pp. 353–362. [Google Scholar]
- Gong, X.; Asai, T.; Motomura, M. Reaction-diffusion media with excitable oregonators coupled by memristors. In Proceedings of the 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications, Turin, Italy, 29–31 August 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Berenstein, I.; Beta, C. Cross-diffusion in the two-variable Oregonator model. Chaos 2013, 23, 033119. [Google Scholar] [CrossRef]
- Pellitero, M.A.; Álvarez Lamsfus, C.; Borge, J. The Belousov–Zhabotinskii Reaction: Improving the Oregonator Model with the Arrhenius Equation. J. Chem. Educ. 2013, 90, 82–89. [Google Scholar] [CrossRef]
- Sherman, A.S.; Peskin, C.S. A Monte Carlo Method for Scalar Reaction Diffusion Equations. SIAM J. Sci. Stat. Comput. 1986, 7, 1360–1372. [Google Scholar] [CrossRef]
- Gerhardt, M.; Schuster, H.; Tyson, J.J. A Cellular Automaton Model of Excitable Media Including Curvature and Dispersion. Science 1990, 247, 1563–1566. [Google Scholar] [CrossRef]
- Weimar, J.R. Cellular automata for reaction-diffusion systems. Parallel Comput. 1997, 23, 1699–1715. [Google Scholar] [CrossRef]
- Masahiko, H.; Aoki, T.; Morimitsu, H.; Higuchi, T. Implementation of reaction-diffusion cellular automata. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2002, 49, 10–16. [Google Scholar] [CrossRef]
- Ishimura, K.; Komuro, K.; Schmid, A.; Asai, T.; Motomura, M. FPGA implementation of hardware-oriented reaction-diffusion cellular automata models. Nonlinear Theory Its Appl. IEICE 2015, 6, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Ushida, M.; Schmid, A.; Asai, T.; Ishimura, K.; Motomura, M. Motion Vector Estimation of Textureless Objects Exploiting Reaction-Diffusion Cellular Automata. Int. J. Unconv. Comput. 2016, 12, 169–187. [Google Scholar]
- Dourvas, N.I.; Sirakoulis, G.C.; Adamatzky, A. Cellular automaton Belousov–Zhabotinsky model for binary full adder. Int. J. Bifurc. Chaos 2017, 27, 1750089. [Google Scholar] [CrossRef] [Green Version]
- Tsompanas, M.A.; Fyrigos, I.A.; Ntinas, V.; Adamatzky, A.; Sirakoulis, G.C. Cellular automata implementation of Oregonator simulating light-sensitive Belousov–Zhabotinsky medium. Nonlinear Dyn. 2021, 104, 4103–4115. [Google Scholar] [CrossRef]
- Toth, R.; Stone, C.; de Lacy Costello, B.; Adamatzky, A.; Bull, L. Simple collision-based chemical logic gates with adaptive computing. Int. J. Nanotechnol. Mol. Comput. 2010, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Adamatzky, A.; De Lacy Costello, B.; Bull, L.; Holley, J. Towards Arithmetic Circuits in Sub-Excitable Chemical Media. Isr. J. Chem. 2011, 51, 56–66. [Google Scholar] [CrossRef]
- Field, R.J.; Winfree, A.T. Travelling Waves of Chemical Activity in the Zaikin-Zhabotinskii-Winfree Reagent. J. Chem. Educ. 1979, 56, 754. [Google Scholar] [CrossRef]
- Cassani, A.; Monteverde, A.; Piumetti, M. Belousov-Zhabotinsky type reactions: The non-linear behavior of chemical systems. J. Math. Chem. 2021, 59, 792–826. [Google Scholar] [CrossRef]
- Adamatzky, A. Fredkin and Toffoli gates implemented in Oregonator model of Belousov–Zhabotinsky medium. Int. J. Bifurc. Chaos 2017, 27, 1750041. [Google Scholar] [CrossRef] [Green Version]
- Asai, T.; Nishimiya, Y.; Amemiya, Y. A CMOS reaction-diffusion circuit based on cellular-automaton processing emulating the Belousov-Zhabotinsky reaction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2002, 85, 2093–2096. [Google Scholar]
- Matsubara, H.; Asai, T.; Hirose, T.; Amemiya, Y. Reaction-diffusion chip implementing excitable lattices with multiple-valued cellular automata. IEICE Electron. Express 2004, 1, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Adamatzky, A.; Arena, P.; Basile, A.; Carmona-Galán, R.; Costello, B.D.L.; Fortuna, L.; Frasca, M.; Rodríguez-Vázquez, A. Reaction-diffusion navigation robot control: From chemical to VLSI analogic processors. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 926–938. [Google Scholar] [CrossRef]
- Petrás, I.; Rekeczky, C.; Roska, T.; Carmona, R.; Jiménez-Garrido, F.; Rodríguez-Vázquez, A. Exploration of spatial-temporal dynamic phenomena in a 32 × 32-cell stored program two-layer CNN universal machine chip prototype. J. Circuits Syst. Comput. 2003, 12, 691–710. [Google Scholar] [CrossRef]
- Shi, B.E.; Luo, T. Spatial pattern formation via reaction-diffusion dynamics in 32/spl times/32/spl times/4 CNN chip. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 939–947. [Google Scholar] [CrossRef]
- Asai, T.; Kanazawa, Y.; Hirose, T.; Amemiya, Y. Analog reaction-diffusion chip imitating Belousov-Zhabotinsky reaction with hardware oregonator model. Int. J. Unconv. Comput. 2005, 1, 123–147. [Google Scholar]
- Daikoku, T.; Asai, T.; Amemiya, Y. An analog CMOS circuit implementing Turing’s reaction-diffusion model. Signal 2002, 4, 14. [Google Scholar]
- Karahaliloglu, K.; Balkir, S. Bio-inspired compact cell circuit for reaction-diffusion systems. IEEE Trans. Circuits Syst. II Express Briefs 2005, 52, 558–562. [Google Scholar] [CrossRef]
- Serrano-Gotarredona, T.; Linares-Barranco, B. Log-domain implementation of complex dynamics reaction-diffusion neural networks. IEEE Trans. Neural Netw. 2003, 14, 1337–1355. [Google Scholar] [CrossRef]
- Asai, T. Reaction-Diffusion Media with Excitable Oregonators Coupled by Memristors. In Memristor Networks; Springer: Berlin/Heidelberg, Germany, 2014; pp. 625–635. [Google Scholar]
- Fyrigos, I.A.; Ntinas, V.; Sirakoulis, G.C.; Adamatzky, A.; Erokhin, V.; Rubio, A. Wave computing with passive memristive networks. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar]
- Vourkas, I.; Batsos, A.; Sirakoulis, G.C. SPICE modeling of nonlinear memristive behavior. Int. J. Circuit Theory Appl. 2015, 43, 553–565. [Google Scholar] [CrossRef]
- Sassine, G.; La Barbera, S.; Najjari, N.; Minvielle, M.; Dubourdieu, C.; Alibart, F. Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices. J. Vac. Sci. Technol. B 2016, 34, 012202. [Google Scholar] [CrossRef]
- Ntinas, V.; Vourkas, I.; Sirakoulis, G.C.; Adamatzky, A. Modeling Physarum space exploration using memristors. J. Phys. D Appl. Phys. 2017, 50, 174004. [Google Scholar] [CrossRef]
- Ntinas, V.; Vourkas, I.; Sirakoulis, G.C.; Adamatzky, A.I. Oscillation-Based Slime Mould Electronic Circuit Model for Maze-Solving Computations. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 1552–1563. [Google Scholar] [CrossRef]
- Fyrigos, I.A.; Ntinas, V.; Tsompanas, M.A.; Kitsios, S.; Sirakoulis, G.C.; Tsoukalas, D.; Adamatzky, A. Implementation and Optimization of Chemical Logic Gates Using Memristive Cellular Automata. In Proceedings of the 2020 European Conference on Circuit Theory and Design (ECCTD), Sofia, Bulgaria, 7–10 September 2020; pp. 1–6. [Google Scholar]
- Chatzinikolaou, T.P.; Fyrigos, I.A.; Ntinas, V.; Kitsios, S.; Bousoulas, P.; Tsompanas, M.A.; Tsoukalas, D.; Sirakoulis, G.C. Unconventional Logic on Memristor-Based Oscillatory Medium. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 5–7 July 2021; pp. 1–4. [Google Scholar]
- Bousoulas, P.; Sakellaropoulos, D.; Papakonstantinopoulos, C.; Kitsios, S.; Arvanitis, C.; Bagakis, E.; Tsoukalas, D. Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO2-based conductive bridge memristors. Nanotechnology 2020, 31, 454002. [Google Scholar] [CrossRef] [PubMed]
- Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 786–790. [Google Scholar] [CrossRef]
- Chatzinikolaou, T.P.; Fyrigos, I.A.; Ntinas, V.; Kitsios, S.; Bousoulas, P.; Tsompanas, M.A.; Tsoukalas, D.; Sirakoulis, G.C. Multifunctional Spatially-Expanded Logic Gate for Unconventional Computations with Memristor-Based Oscillators. In Proceedings of the 17th International Workshop on Cellular Nanoscale Networks and Their Applications, Catania, Italy, 29 September–1 October 2021; pp. 1–4. [Google Scholar]
Logic | Logic Gate Inputs | ||||
---|---|---|---|---|---|
Operation | INPUT 1 | INPUT 2 | INPUT 3 | INPUT 4 | INPUT 5 |
NOT | x | ‘1’ | ‘0’ | ‘0’ | ‘0’ |
AND | ‘0’ | ‘0’ | x | y | ‘1’ |
OR | x | ‘0’ | ‘1’ | y | ‘0’ |
XNOR | x | ‘1’ | y | ‘0’ | ‘0’ |
NOR | ‘0’ | ‘1’ | ‘0’ | x | y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzinikolaou, T.P.; Fyrigos, I.-A.; Ntinas, V.; Kitsios, S.; Tsompanas, M.-A.; Bousoulas, P.; Tsoukalas, D.; Adamatzky, A.; Sirakoulis, G.C. Chemical Wave Computing from Labware to Electrical Systems. Electronics 2022, 11, 1683. https://doi.org/10.3390/electronics11111683
Chatzinikolaou TP, Fyrigos I-A, Ntinas V, Kitsios S, Tsompanas M-A, Bousoulas P, Tsoukalas D, Adamatzky A, Sirakoulis GC. Chemical Wave Computing from Labware to Electrical Systems. Electronics. 2022; 11(11):1683. https://doi.org/10.3390/electronics11111683
Chicago/Turabian StyleChatzinikolaou, Theodoros Panagiotis, Iosif-Angelos Fyrigos, Vasileios Ntinas, Stavros Kitsios, Michail-Antisthenis Tsompanas, Panagiotis Bousoulas, Dimitris Tsoukalas, Andrew Adamatzky, and Georgios Ch. Sirakoulis. 2022. "Chemical Wave Computing from Labware to Electrical Systems" Electronics 11, no. 11: 1683. https://doi.org/10.3390/electronics11111683
APA StyleChatzinikolaou, T. P., Fyrigos, I.-A., Ntinas, V., Kitsios, S., Tsompanas, M.-A., Bousoulas, P., Tsoukalas, D., Adamatzky, A., & Sirakoulis, G. C. (2022). Chemical Wave Computing from Labware to Electrical Systems. Electronics, 11(11), 1683. https://doi.org/10.3390/electronics11111683