Empirical Characterization of ReRAM Devices Using Memory Maps and a Dynamic Route Map
Abstract
:1. Introduction
2. Memristor Modelling Framework
3. The Dynamic Route Map
- Any point belonging to the positive half-plane, i.e., , moves to the right of its dynamic route, thus increasing the value of variable x.
- any point belonging to the negative half-plane, i.e., , moves to the left of its dynamic route, thus decreasing the value of variable x.
- The higher a dynamic route is located, the faster a point will move along it, as long as this route belongs to the upper half-plane (thus, its points move to the right).
- The lower a dynamic route is, the faster a point will travel along it, as long as this route belongs to the lower half-plane (thus, its points move to the left).
- All the points with null velocity , i.e., those found on the horizontal axis, define equilibrium states of the system and are called equilibrium points.
- Equilibrium points may be stable or unstable. This means that the dynamic routes that lead to them may converge towards them or diverge from them, correspondingly.
4. Experimental Results
4.1. Description of the Used Devices
4.2. Model Generation
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chua, L.O. Memristor-the missing circuit element. Circuit Theory IEEE Trans. 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Prodromakis, T.; Toumazou, C.; Chua, L. Two centuries of memristors. Nat. Mater. 2012, 11, 478–481. [Google Scholar] [CrossRef]
- Chua, L.; Kang, S.M. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [Google Scholar] [CrossRef]
- Tetzlaff, R. Memristors and Memristive Systems; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544. [Google Scholar] [CrossRef]
- Kim, H.; Sah, M.P.; Yang, C.; Chua, L.O. Memristor-based multilevel memory. In Proceedings of the Cellular Nanoscale Networks and Their Applications (CNNA), 2010 12th International Workshop, Berkeley, CA, USA, 3–5 February 2010; pp. 1–6. [Google Scholar]
- Stathopoulos, S.; Khiat, A.; Trapatseli, M.; Cortese, S.; Serb, A.; Valov, I.; Prodromakis, T. Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 2017, 7, 17532. [Google Scholar] [CrossRef] [Green Version]
- Eshraghian, K.; Cho, K.R.; Kavehei, O.; Kang, S.K.; Abbott, D.; Kang, S.M.S. Memristor MOS content addressable memory (MCAM): Hybrid architecture for future high performance search engines. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 1407–1417. [Google Scholar] [CrossRef] [Green Version]
- Gouder, A.; Jimenez-Solano, A.; Vargas-Barbosa, N.M.; Podjaski, F.; Lotsch, B.V. Photo-memristive sensing with charge storing 2D carbon nitrides. arXiv 2021, arXiv:2109.06964. [Google Scholar]
- Carrara, S. The Birth of a New Field: Memristive Sensors. A Review. IEEE Sens. J. 2020, 21, 12370–12378. [Google Scholar] [CrossRef]
- Carrara, S.; Sacchetto, D.; Doucey, M.A.; Baj-Rossi, C.; De Micheli, G.; Leblebici, Y. Memristive-biosensors: A new detection method by using nanofabricated memristors. Sens. Actuators Chem. 2012, 171, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Gupta, I.; Serb, A.; Khiat, A.; Zeitler, R.; Vassanelli, S.; Prodromakis, T. Memristive integrative sensors for neuronal activity. arXiv 2015, arXiv:1507.06832. [Google Scholar]
- Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef]
- Pershin, Y.V.; Di Ventra, M. Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 2010, 23, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z.; et al. Efficient and self-adaptive in situ learning in multilayer memristor neural networks. Nat. Commun. 2018, 9, 2385. [Google Scholar] [CrossRef] [Green Version]
- Grollier, J.; Querlioz, D.; Stiles, M.D. Spintronic Nanodevices for Bioinspired Computing. Proc. IEEE 2016, 104, 2024–2039. [Google Scholar] [CrossRef] [Green Version]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Dias, C.; Lv, H.; Picos, R.; Aguiar, P.; Cardoso, S.; Freitas, P.; Ventura, J. Bipolar resistive switching in Si/Ag nanostructures. Appl. Surf. Sci. 2017, 424, 122–126. [Google Scholar] [CrossRef]
- Brivio, S.; Tallarida, G.; Cianci, E.; Spiga, S. Formation and disruption of conductive filaments in a HfO2/TiN structure. Nanotechnology 2014, 25, 385705. [Google Scholar] [CrossRef]
- Mohammad, B.; Jaoude, M.A.; Kumar, V.; Al Homouz, D.M.; Nahla, H.A.; Al-Qutayri, M.; Christoforou, N. State of the art of metal oxide memristor devices. Nanotechnol. Rev. 2016, 5, 311–329. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, X.; Zhou, G.; Li, P.; Zhang, Y.; Wang, H.; Xia, Y.; Zhao, Y. An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron. 2017, 42, 181–186. [Google Scholar] [CrossRef]
- Battistoni, S.; Dimonte, A.; Erokhin, V. Organic memristor based elements for bio-inspired computing. In Advances in Unconventional Computing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 469–496. [Google Scholar]
- Kalomiros, J.; Stavrinides, S.G.; Corinto, F. A two-transistor non-ideal memristor emulator. In Proceedings of the Modern Circuits and Systems Technologies (MOCAST), 5th International Conference, Thessaloniki, Greece, 12–14 May 2016; pp. 1–4. [Google Scholar]
- Camps, O.; Al Chawa, M.M.; de Benito, C.; Roca, M.; Stavrinides, S.G.; Picos, R.; Chua, L.O. A purely digital memristor emulator based on a flux-charge model. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 565–568. [Google Scholar]
- Al Chawa, M.M.; de Benito, C.; Roca, M.; Picos, R.; Stavrinides, S. Design and implementation of passive memristor emulators using a charge-flux approach. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Camps, O.; Picos, R.; de Benito, C.; Al Chawa, M.M.; Stavrinides, S.G. Emulating memristors in a digital environment using stochastic logic. In Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; pp. 1–4. [Google Scholar]
- Camps, O.; Stavrinides, S.G.; Picos, R. Stochastic Computing Implementation of Chaotic Systems. Mathematics 2021, 9, 375. [Google Scholar] [CrossRef]
- Yu, S.; Jiang, H.; Huang, S.; Peng, X.; Lu, A. Compute-in-Memory Chips for Deep Learning: Recent Trends and Prospects. IEEE Circuits Syst. Mag. 2021, 21, 31–56. [Google Scholar] [CrossRef]
- Picos, R.; Roldan, J.; Al Chawa, M.; Jimenez-Molinos, F.; Garcia-Moreno, E. A physically based circuit model to account for variability in memristors with resistive switching operation. In Proceedings of the 2016 Conference on Design of Circuits and Integrated Systems (DCIS), Granada, Spain, 23–25 November 2016; pp. 1–6. [Google Scholar]
- Naous, R.; Al-Shedivat, M.; Salama, K.N. Stochasticity modeling in memristors. IEEE Trans. Nanotechnol. 2016, 15, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Panda, D.; Sahu, P.P.; Tseng, T.Y. A collective study on modeling and simulation of resistive random access memory. Nanoscale Res. Lett. 2018, 13, 1–48. [Google Scholar] [CrossRef]
- Kolka, Z.; Biolek, D.; Biolkova, V.; Biolek, Z. Evaluation of memristor models for large crossbar structures. In Proceedings of the Radioelektronika (RADIOELEKTRONIKA), 2016 26th International Conference, Kosice, Slovakia, 19–20 April 2016; pp. 91–94. [Google Scholar]
- Messaris, I.; Serb, A.; Khiat, A.; Nikolaidis, S.; Prodromakis, T. A compact Verilog-A ReRAM switching model. arXiv 2017, arXiv:1703.01167. [Google Scholar]
- Georgiou, P.S.; Yaliraki, S.N.; Drakakis, E.M.; Barahona, M. Window functions and sigmoidal behaviour of memristive systems. Int. J. Circuit Theory Appl. 2016, 44, 1685–1696. [Google Scholar] [CrossRef] [Green Version]
- Ascoli, A.; Tetzlaff, R.; Chua, L. Continuous and differentiable approximation of a TaO memristor model for robust numerical simulations. In Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences; Springer: Berlin/Heidelberg, Germany, 2017; pp. 61–69. [Google Scholar]
- Jimenez-Molinos, F.; Villena, M.; Roldan, J.; Roldan, A. A SPICE Compact Model for Unipolar RRAM Reset Process Analysis. IEEE Trans. Electron Devices 2015, 62, 955–962. [Google Scholar] [CrossRef]
- Li, Q.; Serb, A.; Prodromakis, T.; Xu, H. A memristor SPICE model accounting for synaptic activity dependence. PLoS ONE 2015, 10, e0120506. [Google Scholar] [CrossRef] [Green Version]
- Orlowski, M.; Secco, J.; Corinto, F. Chua’s Constitutive Memristor Relations for Physical Phenomena at Metal–Oxide Interfaces. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 143–152. [Google Scholar] [CrossRef]
- Secco, J.; Corinto, F.; Sebastian, A. Flux–charge memristor model for phase change memory. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 111–114. [Google Scholar] [CrossRef]
- Picos, R.; Roldan, J.B.; Al Chawa, M.M.; Garcia-Fernandez, P.; Jimenez-Molinos, F.; Garcia-Moreno, E. Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching Based Memristors. Radioengineering 2015, 24, 421. [Google Scholar] [CrossRef]
- Chawa, M.M.A.; Picos, R.; Tetzlaff, R. A Compact Memristor Model for Neuromorphic ReRAM Devices in Flux-Charge Space. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3631–3641. [Google Scholar] [CrossRef]
- Garcia-Moreno, E.; Picos, R.; Al-Chawa, M.M. SPICE model for unipolar RRAM based on a flux-controlled memristor. In Proceedings of the Power, Electronics and Computing (ROPEC), 2015 IEEE International Autumn Meeting, Ixtapa, Zihuatanejo, Mexico, 4–6 November 2015; pp. 1–4. [Google Scholar]
- Al Chawa, M.M.; Picos, R.; Roldan, J.B.; Jimenez-Molinos, F.; Villena, M.A.; de Benito, C. Exploring resistive switching-based memristors in the charge–flux domain: A modeling approach. Int. J. Circuit Theory Appl. 2018, 46, 29–38. [Google Scholar] [CrossRef]
- Al Chawa, M.M.; Picos, R. A Simple Quasi-Static Compact Model of Bipolar ReRAM Memristive Devices. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 390–394. [Google Scholar] [CrossRef]
- Al Chawa, M.M.; de Benito, C.; Picos, R. A Simple Piecewise Model of Reset/Set Transitions in Bipolar ReRAM Memristive Devices. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 3469–3480. [Google Scholar] [CrossRef]
- Al Chawa, M.M.; Picos, R.; Tetzlaff, R. A simple memristor model for neuromorphic ReRAM devices. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; p. 1. [Google Scholar] [CrossRef]
- Al Chawa, M.M.; Tetzlaff, R.; Picos, R. A flux-controlled memristor model for neuromorphic ReRAM devices. In Proceedings of the 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Virtual Conference, 23–25 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Corinto, F.; Civalleri, P.P.; Chua, L.O. A theoretical approach to memristor devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, D.; Gonzalez, M.B.; Campabadal, F.; Jimenez-Molinos, F.; Al Chawa, M.M.; Stavrinides, S.G.; Roldan, J.B.; Tetzlaff, R.; Picos, R.; Chua, L.O. Experimental evaluation of the dynamic route map in the reset transition of memristive ReRAMs. Chaos Solitons Fractals 2020, 139, 110288. [Google Scholar] [CrossRef]
- Marrone, F.; Secco, J.; Kersting, B.; Le Gallo, M.; Corinto, F.; Sebastian, A.; Chua, L.O. Experimental validation of state equations and dynamic route maps for phase change memristive devices. Sci. Rep. 2022, 12, 6488. [Google Scholar] [CrossRef]
- Picos, R.; Al Chawa, M.M.; de Benito, C.; Stavrinides, S.G.; Chua, L.O. Using Self-heating Resistors as a case study for Memristor Compact Modelling. IEEE J. Electron Devices Soc. 2022; in press. [Google Scholar]
- Chua, L.O. Everything you wish to know about memristors but are afraid to ask. Radioengineering 2015, 24, 319. [Google Scholar] [CrossRef]
- Shin, S.; Kim, K.; Kang, S.M. Compact models for memristors based on charge-flux constitutive relationships. Comput.-Aided Des. Integr. Circuits Syst. IEEE Trans. 2010, 29, 590–598. [Google Scholar] [CrossRef]
- Picos, R.; Al Chawa, M.M.; Roca, M.; Garcia-Moreno, E. A charge-dependent mobility memristor model. In Proceedings of the 10th Spanish Conference on Electron Devices, CDE’2015, Aranjuez-Madrid, Spain, 11–13 February 2015. [Google Scholar]
- Picos, R.; Roldan, J.B.; Al Chawa, M.M.; Jimenez-Molinos, F.; Villena, M.; Garcia-Moreno, E. Exploring ReRAM-based memristors in the charge-flux domain, a modeling approach. In Proceedings of the International Conference on Memristive Systems, MEMRISYS’2015, Paphos, Cyprus, 8–10 November 2015. [Google Scholar]
- Al Chawa, M.M.; Tetzlaff, R.; Picos, R. A Simple Monte Carlo MODEL for the cycle-to-cycle reset transition variation of ReRAM memristive devices. In Proceedings of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 7–9 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- de Benito, C.; Al Chawa, M.M.; Picos, R.; Garcia-Moreno, E. A procedure to calculate a delay model for memristive switches. In Proceedings of the Workshop on Memristor Technology, Design, Automation and Computing, Stockholm, Sweden, 23–25 January 2017. [Google Scholar]
- Theodorakakos, A.; Stavrinides, S.G.; Hatzikraniotis, E.; Picos, R. A non-ideal memristor device. In Proceedings of the Memristive Systems (MEMRISYS) 2015 International Conference, Paphos, Cyprus, 8–10 November 2015; pp. 1–2. [Google Scholar]
- Al Chawa, M.M.; Rodriguez-Fernandez, A.; Bargallo, M.; Campabadal, F.; de Benito, C.; Stavrinides, S.; Garcia-Moreno, E.; Picos, R. Waveform and frequency effects on reset transition in bipolar ReRAM in flux-charge space. In Proceedings of the Memristive Systems (MEMRISYS) 2017 International Conference on Memristive Materials, Devices & Systems, Athens, Greece, 3–6 April 2017. [Google Scholar]
- Al Chawa, M.M.; Picos, R.; Covi, E.; Brivio, S.; Garcia-Moreno, E.; Spiga, S. Flux-charge characterizing of reset transition in bipolar resistive-switching memristive devices. In Proceedings of the 11th Spanish Conference on Electron Devices, Barcelona, Spain, 8–10 February 2017. [Google Scholar]
- Liouville, J. Sur la Théorie de la Variation des constantes arbitraires. J. Des Mathématiques Pures Appl. 1838, 3, 342–349. [Google Scholar]
- Poincaré, H. Les Méthodes Nouvelles de la Mécanique Céleste; 1892-99; Gauthier-Villars: Paris, France, 1892; Volume 3. [Google Scholar]
- Ehrenfest, P.; Ehrenfest, T. Encyklopadie der Mathematischen Wis-Senschaften; B. G. Teubner: Liepzig, Germany, 1911; Volume 4. [Google Scholar]
- Chua, L.O. If it’s pinched it’s a memristor. Semicond. Sci. Technol. 2014, 29, 104001. [Google Scholar] [CrossRef]
- Chua, L.O. Five non-volatile memristor enigmas solved. App. Physics A 2018, 124, 563. [Google Scholar] [CrossRef]
- Poblador, S.; Maestro-Izquierdo, M.; Zabala, M.; Gonzalez, M.B.; Campabadal, F. Methodology for the characterization and observation of filamentary spots in HfOx-based memristor devices. Microelectron. Eng. 2020, 223, 111232. [Google Scholar] [CrossRef]
- Rodriguez-Fernandez, A.; Suñé, J.; Miranda, E.; Gonzalez, M.B.; Campabadal, F.; Al Chawa, M.M.; Picos, R. SPICE model for the ramp rate effect in the reset characteristic of memristive devices. In Proceedings of the 2017 32nd Conference on Design of Circuits and Integrated Systems (DCIS), Barcelona, Spain, 22–24 November 2017; pp. 1–4. [Google Scholar]
- Miranda, E. Compact model for the major and minor hysteretic I–V loops in nonlinear memristive devices. IEEE Trans. Nanotechnol. 2015, 14, 787–789. [Google Scholar] [CrossRef]
Coefficient | Value | 95% Confidence |
---|---|---|
p | −3.19 × 10 | (−5.93 × 10, −4.56 × 10) |
p | 3.77 × 10 | (−1.03 × 10, 8.57 × 10) |
p | 3.42 × 10 | (−7.88 × 10, 7.63 × 10) |
p | 1.96 × 10 | (1.04 × 10, 2.88 × 10) |
p | −4.70 × 10 | (−9.22 × 10, −1.84 × 10) |
p | −1.24 × 10 | (−3.43 × 10, 9.56 × 10) |
p | 3.52 × 10 | (2.18 × 10, 4.87 × 10) |
p | 2.68 × 10 | (−2.57 × 10, 7.93 × 10) |
p | 2.28 × 10 | (8.40 × 10, 3.72 × 10) |
p | 1.33 × 10 | (−3.44 × 10, 6.10 × 10) |
p | 2.26 × 10 | (1.37 × 10, 3.14 × 10) |
p | −1.41 × 10 | (−5.16 × 10, 2.34 × 10) |
p | −1.62 × 10 | (−2.46 × 10, −7.74 × 10) |
p | −3.65 × 10 | (−5.37 × 10, −1.93 × 10) |
p | −4.13 × 10 | (−4.57 × 10, 4.49 × 10) |
p | 4.40 × 10 | (2.31 × 10, 6.48 × 10) |
p | −2.46 × 10 | (−3.50 × 10, −1.42 × 10) |
p | −2.41 × 10 | (−4.71 × 10, −9.93 × 10) |
p | 1.15 × 10 | (7.47 × 10, 1.55 × 10) |
p | 1.80 × 10 | (1.11 × 10, 2.49 × 10) |
p | −3.56 × 10 | (−1.92 × 10, 1.20 × 10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picos, R.; Stavrinides, S.G.; Al Chawa, M.M.; de Benito, C.; Dueñas, S.; Castan, H.; Hatzikraniotis, E.; Chua, L.O. Empirical Characterization of ReRAM Devices Using Memory Maps and a Dynamic Route Map. Electronics 2022, 11, 1672. https://doi.org/10.3390/electronics11111672
Picos R, Stavrinides SG, Al Chawa MM, de Benito C, Dueñas S, Castan H, Hatzikraniotis E, Chua LO. Empirical Characterization of ReRAM Devices Using Memory Maps and a Dynamic Route Map. Electronics. 2022; 11(11):1672. https://doi.org/10.3390/electronics11111672
Chicago/Turabian StylePicos, Rodrigo, Stavros G. Stavrinides, Mohamad Moner Al Chawa, Carola de Benito, Salvador Dueñas, Helena Castan, Euripides Hatzikraniotis, and Leon O. Chua. 2022. "Empirical Characterization of ReRAM Devices Using Memory Maps and a Dynamic Route Map" Electronics 11, no. 11: 1672. https://doi.org/10.3390/electronics11111672
APA StylePicos, R., Stavrinides, S. G., Al Chawa, M. M., de Benito, C., Dueñas, S., Castan, H., Hatzikraniotis, E., & Chua, L. O. (2022). Empirical Characterization of ReRAM Devices Using Memory Maps and a Dynamic Route Map. Electronics, 11(11), 1672. https://doi.org/10.3390/electronics11111672