Backup Capacity Planning Considering Short-Term Variability of Renewable Energy Resources in a Power System
Abstract
:1. Introduction
2. Power System Flexibility and Variability of Renewable Energy
2.1. Flexibility of Power System
2.2. Variability of Renewable Energy
2.2.1. Variability at Each Time Horizon
2.2.2. Variability According to the Output of Renewable Energy Resources
3. Flexibility Deficit and Optimal Backup Capacity
3.1. Flexibility Deficit
3.2. Optimal Backup Capacity
3.3. The BC Planning Considering Short-Term Variability of Renewable Energy Resources
4. Numerical Results
4.1. Scenarios
4.2. Determining the Optimal BC
4.2.1. Annual Construction Cost
4.2.2. Optimal BC Resulted from Minimum Total Cost
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BC | Backup capacity |
SUH | Startup hour |
RR | Ramp rate |
ESS | Energy storage system |
GT | Gas turbines |
VRE | Variable renewable energy |
SF | System flexibility |
CCGT | Combined cycle gas turbine |
FD | Flexibility deficit |
OBC | Optimal backup capacity |
UC | Unit commitment |
ED | Economic dispatch |
PV | Photovoltaic |
References
- OECD. Energy Transition after the Paris Agreement: Policy and Corporate Challenges; OECD: Paris, France, 2016. [Google Scholar]
- The Ministry of Trade, Industry and Energy. New and Renewable Energy 3020 Implementation Plan; The Ministry of Trade, Industry and Energy: Sejong-si, Korea, 2017. (In Korean)
- The Ministry of Trade, Industry and Energy. The 8th Basic Plan for Long-Term Electricity Supply and Demand (2017–2031); The Ministry of Trade, Industry and Energy: Sejong-si, Korea, 2017. (In Korean)
- OECD; Nuclear Energy Agency (NEA). The Costs of Decarbonisation: System Costs with High Shares of Nuclear and Renewables; OECD: Paris, France, 2019. [Google Scholar]
- KU Leuven. Determining the Impact of Renewable Energy on Balancing Costs, Back up Costs, Grid Costs and Subsidies; KU Leuven: Leuven, Belgium, 2016. [Google Scholar]
- Hirth, L.; Ueckerdt, F.; Edenhofer, O. Integration costs revisited—An economic framework for wind and solar variability. Renew. Energy 2015, 74, 925–939. [Google Scholar] [CrossRef]
- Agora Energiewende. The Integration Costs of Wind and Solar Power; Agora Energiewende: Berlin, Germany, 2015. [Google Scholar]
- Hinkle, G. GE Energy Consulting. In PJM Renewable Integration Study Executive Summary Report; Revision 05; General Electric International, Inc.: New York, NY, USA, 2014. [Google Scholar]
- Min, C.-G. Analyzing the Impact of Variability and Uncertainty on Power System Flexibility. Appl. Sci. 2019, 9, 561. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.; Crispim, J. Variability and correlation of renewable energy sources in the Portuguese electrical system. Energy Sustain. Dev. 2018, 42, 64–76. [Google Scholar] [CrossRef]
- Solomon, A.A.; Kammen, D.M.; Callaway, D. Investigating the impact of wind–solar complementarities on energystorage requirement and the corresponding supply reliability. Appl. Energy 2016, 168, 130–145. [Google Scholar] [CrossRef] [Green Version]
- Barasa, M.; Aganda, A. Wind power variability of selected sites in Kenya and the impact tosystem operating reserve. Renew. Energy 2016, 85, 464–471. [Google Scholar] [CrossRef]
- California ISO. Final Flexible Capacity Needs Assessment for 2021. 2020. Available online: http://www.caiso.com/informed/Pages/StakeholderProcesses/FlexibleCapacityNeedsAssessmentProcess.aspx (accessed on 17 March 2021).
- Krad, I.; Ibanez, E.; Ela, E. Quantifying the Potential Impacts of Flexibility Reserve on Power System Operations. In Proceedings of the 2015 Seventh Annual IEEE Green Technologies Conference, New Orleans, LA, USA, 15–17 April 2015. [Google Scholar]
- Mills, A.; Seel, J. Flexibility Inventory for Western Resource Planners. 2015. Available online: http://escholarship.org/uc/item/7gg5461d (accessed on 17 March 2021).
- Akrami, A.; Doostizadeh, M.; Aminifar, F. Power system flexibility: An overview of emergence to evolution. J. Modern Power Syst. Clean Energy 2019, 7, 987–1007. [Google Scholar] [CrossRef] [Green Version]
- Shuai, M.; Chengzhi, W.; Shiwen, Y.; Hao, G.; Jufang, Y.; Hui, H. Review on Economic Loss Assessment of Power Outages. Procedia Comput. Sci. 2018, 130, 1158–1163. [Google Scholar] [CrossRef]
- Heggarty, T.; Bourmaud, J.Y.; Girard, R.; Kariniotakis, G. Multi-temporal assessment of power system flexibility requirement. Appl. Energy 2019, 238, 1327–1336. [Google Scholar] [CrossRef] [Green Version]
- Stratigakos, A.C.; Krommydas, K.F.; Papageorgiou, P.C.; Dikaiakos, C.; Papaioannou, G.P. A Suitable Flexibility Assessment Approach for the Pre-Screening Phase of Power System Planning Applied on the Greek Power System. In Proceedings of the IEEE EUROCON 2019-18th International Conference on Smart Technologies, Novi Sad, Serbia, 1–4 July 2019. [Google Scholar]
- Lannoye, E.; Daly, P.; Tuohy, A.; Flynn, D.; O’Malley, M. Assessing Power System Flexibility for Variable Renewable Integration: A Flexibility Metric for Long-Term System Planning. CIGRE Sci. Eng. J. 2015, 3, 26–39. [Google Scholar]
- Jeong, J.; Shin, H.; Song, H.; Lee, B. A Countermeasure for Preventing Flexibility Deficit under High-Level Penetration of Renewable Energies: A Robust Optimization Approach. Sustainability 2018, 10, 4159. [Google Scholar] [CrossRef] [Green Version]
- Poncela, M.; Purvins, A.; Chondrogiannis, S. Pan-European Analysis on Power System Flexibility. Energies 2018, 11, 1765. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Yan, R.; Saha, T.K. Variability Study of a Utility-scale PV Plant in the Fringe of Grid, Australia. In Proceedings of the 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New Zealand, 4–7 December 2017. [Google Scholar]
- Wohland, J.; Reyers, M.; Märker, C.; Witthaut, D. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016. PLoS ONE 2018, 13, e0190707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeter, P.; Güler, Ö.; Akdağ, S.A. The Impact of Wind Speed Variability on Wind Power Potential and Estimated Generation Cost. Energy Sources Part B Econ. Plan. Policy 2012, 7, 339–347. [Google Scholar] [CrossRef]
- Graabak, I.; Korpås, M. Variability Characteristics of European Wind and Solar Power Resources—A Review. Energies 2016, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’isidoro, M.; Lacal-Arántegui, R. Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew. Energy 2014, 63, 576–586. [Google Scholar] [CrossRef]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; Lara-Fanego, V.; Tovar-Pescador, J. Analysis of spatiotemporal balancing between wind and solar energy resources in the southern Iberian Peninsula. J. Appl. Meteorol. Climatol. 2012, 51, 2005–2024. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, L.; Wang, H.; Dai, S.; Qi, Z. Analysis on the hourly spatiotemporal complementarities between China’s solar and wind energy resources spreading in a wide area. Sci. China Technol. Sci. 2013, 56, 683–692. [Google Scholar] [CrossRef]
- Marcos, J.; Marroyo, L.; Lorenzo, E.; García, M. Smoothing of PV power fluctuations by geographical dispersion. Prog. Photovolt. Res. Appl. 2012, 20, 226–237. [Google Scholar] [CrossRef] [Green Version]
Status | Within 5 min | 30 min | 60 min | 120 min |
---|---|---|---|---|
Online | Remaining Capacity of Online Flexible Power Plants | |||
Offline | Battery energy storage, pumped-hydro Energy storage, etc. | Gas turbine (SUH * < 30 min), Pumped-hydro Energy storage, etc. | Gas turbine (SUH < 60 min), Pumped-hydro Energy storage, etc. | Combined cycle GT (SUH < 120 min), etc. |
Time Horizon | Value |
---|---|
5 min | |
30 min | |
60 min | |
120 min |
Time Horizon | Low Level (0–30%) | Mid Level (30–60%) | High Level (60–100%) |
---|---|---|---|
5 min | 5.57 | 6.21 | 2.92 |
30 min | 10.77 | 12.08 | 7.29 |
60 min | 18.80 | 21.77 | 16.53 |
120 min | 27.94 | 35.81 | 32.08 |
Type | Nuclear | Coal | CCGT | Pumped-Hydro |
---|---|---|---|---|
Total capacity (GW) | 20.4 | 38.0 | 49.8 | 6.1 |
Scenarios | Variability of VRE (%) | |||||
---|---|---|---|---|---|---|
Name | Load Level | Renew Output | 5 min | 30 min | 60 min | 120 min |
S1 | Peak | High level | 2.92 | 7.29 | 16.53 | 32.08 |
S2 | Peak | Mid level | 6.21 | 12.08 | 21.77 | 35.81 |
S3 | Peak | Low level | 5.57 | 10.77 | 18.80 | 27.94 |
S4 | Average | High level | 2.92 | 7.29 | 16.53 | 32.08 |
S5 | Average | Mid level | 6.21 | 12.08 | 21.77 | 35.81 |
S6 | Average | Low level | 5.57 | 10.77 | 18.80 | 27.94 |
Type | Reserve Capacity | Response Time | Duration Time | |
---|---|---|---|---|
Regulation reserve | 700 MW | 5 min | 30 min | |
Contingency reserve | Primary | 1000 MW | 10 s | 5 min |
Secondary | 1400 MW | 10 min | 30 min | |
Tertiary | 1400 MW | 30 min | - |
ESS | CCGT | |
---|---|---|
Annual construction cost | 0.3791 billion won/MW | 61.39 billion won/unit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Lee, D.; Jang, H.; Joo, S.-K. Backup Capacity Planning Considering Short-Term Variability of Renewable Energy Resources in a Power System. Electronics 2021, 10, 709. https://doi.org/10.3390/electronics10060709
Lee D, Lee D, Jang H, Joo S-K. Backup Capacity Planning Considering Short-Term Variability of Renewable Energy Resources in a Power System. Electronics. 2021; 10(6):709. https://doi.org/10.3390/electronics10060709
Chicago/Turabian StyleLee, Deukyoung, Dongjun Lee, Hanhwi Jang, and Sung-Kwan Joo. 2021. "Backup Capacity Planning Considering Short-Term Variability of Renewable Energy Resources in a Power System" Electronics 10, no. 6: 709. https://doi.org/10.3390/electronics10060709
APA StyleLee, D., Lee, D., Jang, H., & Joo, S.-K. (2021). Backup Capacity Planning Considering Short-Term Variability of Renewable Energy Resources in a Power System. Electronics, 10(6), 709. https://doi.org/10.3390/electronics10060709