# Microgrids Power Quality Enhancement Using Model Predictive Control

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Literature Review

#### 1.2. Main Contributions

## 2. Controller Design

#### 2.1. Fourier Expressions

#### 2.2. Predictive Model of the VSI

#### 2.3. Cost Function for the Islanded Mode

#### 2.4. Cost Function for the Grid-Connected Mode

#### 2.5. Cost Function for the Interconnected Mode

## 3. Simulation Results

#### 3.1. Comparison between MPC and PI-PWM Controllers for Single Microgrids

#### 3.2. Power Quality Management Results for Interconnected Microgrids Working without Presence of Grid

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

CCS | Continuous Control Set |

DER | Distributed Energy Resources |

DMPC | Distributed Model Predictive Control |

ESS | Energy Storage System |

FCS | Finite Control State |

GPC | Generalized Predictive Control |

MPC | Model Predictive Control |

PQR | Power Quality and Realibility |

RES | Renewable Energy System |

SHE | Selective Harmonic Elimination |

SP | Smith Predictor |

VSI | Voltage Source Inverter |

## References

- Bollen, M.; Zhong, J.; Zavoda, F.; Meyer, J.; McEachern, A.; Lopez, F.C. Power quality aspects of smart grids. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 23–25 March 2010. [Google Scholar]
- Vasquez, J.C.; Guerrero, J.M.; Miret, J.; Castilla, M.; De Vicuna, L.G. Hierarchical control of intelligent microgrids. IEEE Ind. Electron. Mag.
**2010**, 4, 23–29. [Google Scholar] [CrossRef] - Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid
**2014**, 5, 1905–1919. [Google Scholar] [CrossRef] - Han, Y.; Li, H.; Shen, P.; Coelho, E.A.A.; Guerrero, J.M. Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron.
**2016**, 32, 2427–2451. [Google Scholar] [CrossRef] [Green Version] - Rajesh, K.; Dash, S.; Rajagopal, R.; Sridhar, R. A review on control of ac microgrid. Renew. Sustain. Energy Rev.
**2017**, 71, 814–819. [Google Scholar] [CrossRef] - Yu, X.; Khambadkone, A.M.; Wang, H.; Terence, S.T.S. Control of parallel-connected power converters for low-voltage microgrid—Part I: A hybrid control architecture. IEEE Trans. Power Electron.
**2010**, 25, 2962–2970. [Google Scholar] [CrossRef] - Vandoorn, T.L.; De Kooning, J.D.; Meersman, B.; Guerrero, J.M.; Vandevelde, L. Automatic power-sharing modification of P/V droop controllers in low-voltage resistive microgrids. IEEE Trans. Power Deliv.
**2012**, 27, 2318–2325. [Google Scholar] [CrossRef] - Guerrero, J.M.; De Vicuña, L.G.; Matas, J.; Castilla, M.; Miret, J. Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans. Ind. Electron.
**2005**, 52, 1126–1135. [Google Scholar] [CrossRef] - Micallef, A.; Apap, M.; Spiteri-Staines, C.; Guerrero, J.M.; Vasquez, J.C. Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase islanded microgrids. IEEE Trans. Smart Grid
**2014**, 5, 1149–1158. [Google Scholar] [CrossRef] - Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Secondary control for voltage quality enhancement in microgrids. IEEE Trans. Smart Grid
**2012**, 3, 1893–1902. [Google Scholar] [CrossRef] [Green Version] - Vazquez, S.; Rodriguez, J.; Rivera, M.; Franquelo, L.G.; Norambuena, M. Model predictive control for power converters and drives: Advances and trends. IEEE Trans. Ind. Electron.
**2016**, 64, 935–947. [Google Scholar] [CrossRef] [Green Version] - Vazquez, S.; Montero, C.; Bordons, C.; Franquelo, L.G. Design and experimental validation of a model predictive control strategy for a VSI with long prediction horizon. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 5788–5793. [Google Scholar]
- Vazquez, S.; Acuna, P.; Aguilera, R.P.; Pou, J.; Leon, J.I.; Franquelo, L.G. DC-Link Voltage-Balancing Strategy Based on Optimal Switching Sequence Model Predictive Control for Single-Phase H-NPC Converters. IEEE Trans. Ind. Electron.
**2019**, 67, 7410–7420. [Google Scholar] [CrossRef] - Acuna, P.; Moran, L.; Rivera, M.; Dixon, J.; Rodriguez, J. Improved active power filter performance for renewable power generation systems. IEEE Trans. Power Electron.
**2013**, 29, 687–694. [Google Scholar] [CrossRef] - Antoniewicz, K.; Jasinski, M.; Kazmierkowski, M.P.; Malinowski, M. Model predictive control for three-level four-leg flying capacitor converter operating as shunt active power filter. IEEE Trans. Ind. Electron.
**2016**, 63, 5255–5262. [Google Scholar] - Liu, X.; Wang, D.; Peng, Z. Cascade-free fuzzy finite-control-set model predictive control for nested neutral point-clamped converters with low switching frequency. IEEE Trans. Control Syst. Technol.
**2018**, 27, 2237–2244. [Google Scholar] [CrossRef] - Mohapatra, S.R.; Agarwal, V. Model Predictive Control for Flexible Reduction of Active Power Oscillation in Grid-tied Multilevel Inverters under Unbalanced and Distorted Microgrid Conditions. IEEE Trans. Ind. Appl.
**2019**, 56, 1107–1115. [Google Scholar] [CrossRef] - Wu, M.; Tian, H.; Li, Y.W.; Konstantinou, G.; Yang, K. A composite selective harmonic elimination model predictive control for seven-level hybrid-clamped inverters with optimal switching patterns. IEEE Trans. Power Electron.
**2020**, 36, 274–284. [Google Scholar] [CrossRef] - Aguilera, R.P.; Acuna, P.; Lezana, P.; Konstantinou, G.; Wu, B.; Bernet, S.; Agelidis, V.G. Selective harmonic elimination model predictive control for multilevel power converters. IEEE Trans. Power Electron.
**2016**, 32, 2416–2426. [Google Scholar] [CrossRef] [Green Version] - Shan, Y.; Hu, J.; Li, Z.; Guerrero, J.M. A model predictive control for renewable energy based ac microgrids without any pid regulators. IEEE Trans. Power Electron.
**2018**, 33, 9122–9126. [Google Scholar] [CrossRef] [Green Version] - Prodanovic, M.; Green, T.C. High-quality power generation through distributed control of a power park microgrid. IEEE Trans. Ind. Electron.
**2006**, 53, 1471–1482. [Google Scholar] [CrossRef] [Green Version] - Hosseinzadeh, M.; Salmasi, F.R. Power management of an isolated hybrid AC/DC micro-grid with fuzzy control of battery banks. IET Renew. Power Gener.
**2015**, 9, 484–493. [Google Scholar] [CrossRef] - Ahumada, C.; Cárdenas, R.; Saez, D.; Guerrero, J.M. Secondary control strategies for frequency restoration in islanded microgrids with consideration of communication delays. IEEE Trans. Smart Grid
**2015**, 7, 1430–1441. [Google Scholar] [CrossRef] [Green Version] - Kayalvizhi, S.; Kumar, D.V. Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control. IEEE Access
**2017**, 5, 16241–16251. [Google Scholar] [CrossRef] - Lou, G.; Gu, W.; Xu, Y.; Cheng, M.; Liu, W. Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids. IEEE Trans. Sustain. Energy
**2016**, 8, 792–804. [Google Scholar] [CrossRef] - Kerdphol, T.; Rahman, F.S.; Mitani, Y.; Hongesombut, K.; Küfeoğlu, S. Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability
**2017**, 9, 773. [Google Scholar] [CrossRef] [Green Version] - Gómez, J.S.; Sáez, D.; Simpson-Porco, J.W.; Cárdenas, R. Distributed predictive control for frequency and voltage regulation in microgrids. IEEE Trans. Smart Grid
**2019**, 11, 1319–1329. [Google Scholar] [CrossRef] - Garcia-Torres, F.; Bordons, C.; Vazquez, S. Voltage predictive control for microgrids in islanded mode based on fourier transform. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2358–2363. [Google Scholar]
- Kouro, S.; Perez, M.A.; Rodriguez, J.; Llor, A.M.; Young, H.A. Model predictive control: MPC’s role in the evolution of power electronics. IEEE Ind. Electron. Mag.
**2015**, 9, 8–21. [Google Scholar] [CrossRef]

**Figure 3.**Comparison of the results for the active and reactive power exchange with the main grid between the Model Predictive Control (MPC) and PI-PWM controllers for phase a.

**Figure 4.**Comparison of the THD values for the current exchange with the main grid between the MPC and PI-PWM Controllers.

**Figure 6.**Absolute voltage phase angle value of the voltages at the Point of Common Coupling (PCC) during the blackout of the main grid.

**Figure 10.**Absolute voltage phase angle value per phase and microgrid in mode interconnected and grid-islanded.

Parameter | Value |
---|---|

Filter inductance ${L}_{f}$ | 1 [mH] |

Filter inductance resistance ${R}_{{L}_{f}}$ | 0.1 [$\Omega $] |

Filter capacitor ${C}_{f}$ | 0.5 [mF] |

Filter capacitor resistance ${R}_{{C}_{f}}$ | 0.1 [$\Omega $] |

DC link voltage ${U}_{dc}$ | 950 [V] |

Neutral inductance ${L}_{N}$ | 2.5 [μF] |

Neutral inductance resistance ${R}_{{L}_{N}}$ | 0.1 [$\Omega $] |

Neutral balancing capacitors ${C}_{+},{C}_{-}$ | 6600 [μF] |

Grid connection line inductance ${L}_{grid}$ | 0.1 [mH] |

Grid connection line resistance ${R}_{grid}$ | 0.1 [$\Omega $] |

Slave inverter line inductance ${L}_{inv}$ | 0.1 [mH] |

Slave inverter line resistance ${R}_{inv}$ | 0.1 [$\Omega $] |

Non-linear load line inductance ${L}_{non}$ | 0.1 [mH] |

Non-linear load line resistance ${R}_{{L}_{non}}$ | 0.1 [$\Omega $] |

Non-linear load dc resistance ${R}_{non}$ | 60 [$\Omega $] |

Non-linear load dc capacitor ${C}_{non}$ | 6.6 [mF] |

Unbalanced load phase a resistance ${R}_{a}$ | 1 [M$\Omega $] |

Unbalanced load phase b resistance ${R}_{b}$ | 10 [$\Omega $] |

Unbalanced load phase c resistance ${R}_{c}$ | 10 [$\Omega $] |

Unbalanced load phase b inductance ${L}_{b}$ | 1 [mH] |

Unbalanced load phase c capacitor ${C}_{c}$ | 0.1 [mF] |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Garcia-Torres, F.; Vazquez, S.; Moreno-Garcia, I.M.; Gil-de-Castro, A.; Roncero-Sanchez, P.; Moreno-Munoz, A.
Microgrids Power Quality Enhancement Using Model Predictive Control. *Electronics* **2021**, *10*, 328.
https://doi.org/10.3390/electronics10030328

**AMA Style**

Garcia-Torres F, Vazquez S, Moreno-Garcia IM, Gil-de-Castro A, Roncero-Sanchez P, Moreno-Munoz A.
Microgrids Power Quality Enhancement Using Model Predictive Control. *Electronics*. 2021; 10(3):328.
https://doi.org/10.3390/electronics10030328

**Chicago/Turabian Style**

Garcia-Torres, Felix, Sergio Vazquez, Isabel M. Moreno-Garcia, Aurora Gil-de-Castro, Pedro Roncero-Sanchez, and Antonio Moreno-Munoz.
2021. "Microgrids Power Quality Enhancement Using Model Predictive Control" *Electronics* 10, no. 3: 328.
https://doi.org/10.3390/electronics10030328