Dynamic Beam Hopping Time Slots Allocation Based on Genetic Algorithm of Satellite Communication under Time-Varying Rain Attenuation
Abstract
:1. Introduction
2. System Model
2.1. Beam Hopping of Forward Link
2.2. Beam Hopping Time Plan
2.3. Rain Attenuation Time Series
3. Dynamic Time Slots Allocation Based on Genetic Algorithm
3.1. Beam Hopping Time Slots Allocation
3.2. Genetic Algorithm for Beam Hopping
Algorithm 1. Dynamic Time Slots Allocation based on GA under time-varying rain attenuation. |
(1) Generate beam hopping satellite communication scenario and build the objective function. (2) Set algorithm parameters, including population size, the max number of generations, chromosome length, the probability of crossover and mutation. (3) Generate initial population randomly with individuals as actions: select a beam randomly from K beams for each time slot. (4) For i = 1, 2,…,W do: (5) For j = 1,2,…… do: (6) According to the rain attenuation series of the i-th time slot, calculate to obtain system offered capacity. (7) Calculate objective function of beam hopping, then inverse the results to obtain the fitness value. (8) Select better BHTP solutions: choose the better individuals as the parent generation by employing the roulette selection method. (9) Mutate and exchange BHTP solutions: uniform mutation and single-point exchange crossover operation are performed on the selected individuals to produce next generation population. (10) End For (11) End For |
4. Numerical Simulations and Analysis
5. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, X.; Liu, S.; Wang, Y.; Xu, L.; Zhang, Y.; Wang, C.; Wang, W. Deep reinforcement learning-based beam hopping algorithm in multibeam satellite systems. IET Commun. 2019, 13, 2485–2491. [Google Scholar] [CrossRef]
- Lei, L.; Lagunas, E.; Yuan, Y.; Kibria, M.G.; Chatzinotas, S.; Ottersten, B. Beam Illumination Pattern Design in Satellite Networks: Learning and optimization for efficient beam hopping. IEEE Access 2020, 99, 1–13. [Google Scholar] [CrossRef]
- Anzalchi, J.; Couchman, A.; Gabellini, P.; Gallinaro, G.; Angeletti, P. Beam hopping in multi-beam broadband satellite systems: System simulation and performance comparison with non-hopped systems. In Proceedings of the Advanced Satellite Multimedia Systems Conference & the Signal Processing for Space Communications Workshop, Cagliari, Italy, 13–15 September 2010; pp. 248–255. [Google Scholar]
- Maufroid, X.; Rinaldo, R.; Casaleiz, R. Benefits of beam hopping techniques in future multi-beam broadband satellite networks. In Proceedings of the AIAA International Communications Satellite Systems Conference, San Diego, CA, USA, 11 June 2005. [Google Scholar]
- Kodheli, O.; Lagunas, E.; Maturo, N.; Sharma, S.K.; Shankar, B.; Montoya, J.F.M.; Merlano Duncan, J.C.; Spano, D.; Chatzinotas, S.; Kisseleff, S.; et al. Satellite communications in the new space era: A survey and future challenges. IEEE Commun. Surv. Tutor. 2020, 23, 70–109. [Google Scholar] [CrossRef]
- Mokhtar, A.; Azizoglu, M. On the downlink throughput of a broadband LEO satellite network with hopping beams. IEEE Commun. Lett. 2001, 4, 390–393. [Google Scholar] [CrossRef]
- Alegre, R.; Alagha, N.; Vázquez-Castro, M.Á. Heuristic algorithms for flexible resource allocation in beam hopping multi-beam satellite systems. In Proceedings of the 29th AIAA International Communications Satellite Systems Conference, Nara, Japan, 28 November 2011; pp. 1–15. [Google Scholar]
- Shi, D.; Liu, F.; Zhang, T. Resource allocation in beam hopping communication satellite system. In Proceedings of the International Wireless Communications and Mobile Computing, Byblos, Lebanon, 29–30 June 2020. [Google Scholar]
- Zhang, T.; Zhang, L.; Shi, D. Resource allocation in beam hopping communication system. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018; pp. 1–5. [Google Scholar]
- Han, H.; Zheng, X.; Huang, Q.; Lin, Y. QoS-equilibrium slot allocation for beam hopping in broadband satellite communication systems. Wirel. Netw. 2015, 21, 2617–2630. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Chen, R.; Zhang, Z.; Wang, L.; Wang, W. Dynamic beam hopping for DVB-S2X satellite: A multi-objective deep reinforcement learning approach. In Proceedings of the International Conferences on Ubiquitous Computing & Communications & Data Science and Computational Intelligence & Smart Computing, Networking and Services, Shenyang, China, 21–23 October 2019; pp. 164–169. [Google Scholar]
- Lei, L.; Lagunas, E.; Yuan, Y.; Kibria, M.G.; Chatzinotas, S.; Ottersten, B. Deep learning for beam hopping in multibeam satellite systems. In Proceedings of the IEEE 91st Vehicular Technology Conference, Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Hu, X.; Zhang, Y.; Liao, X.; Liu, Z.; Wang, W.; Ghannouchi, F.M. Dynamic beam hopping method based on multi-objective deep reinforcement learning for next generation satellite broadband systems. IEEE Trans. Broadcast. 2020, 66, 630–646. [Google Scholar]
- Hu, X.; Liu, S.; Chen, R.; Wang, W.; Wang, C. A deep reinforcement learning-based framework for dynamic resource allocation in multibeam satellite systems. IEEE Commun. Lett. 2018, 22, 1612–1615. [Google Scholar] [CrossRef]
- Liu, S.; Hu, X.; Wang, W. Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems. IEEE Access 2018, 6, 15733–15742. [Google Scholar] [CrossRef]
- Digital Video Broadcasting (DVB). Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications, Part II: S2-Extensions (S2-X) EN 302307-2; Technical Report; ETSI: Sophia-Antipolis, France, 2014. [Google Scholar]
- Rohde, C.; Alagha, N.; De Gaudenzi, R.; Stadali, H.; Mocker, G. Super-framing: A powerful physical layer frame structure for next generation satellite broadband systems. Int. J. Satell. Commun. Netw. 2016, 34, 501–532. [Google Scholar] [CrossRef]
- Mazzali, N.; Boumard, S.; Kinnunen, J.; Kinnunen, B.; Shankar, M.R.; Kiviranta, M.; Alagha, N. Enhancing mobile services with DVB-S2X superframing. Int. J. Satell. Commun. Netw. 2018, 36, 503–527. [Google Scholar] [CrossRef]
- Wang, A.; Lei, L.; Lagunas, E.; Chatzinotas, S.; Neira, A.I.P.; Ottersten, B. Joint beam-hopping scheduling and power allocation in NOMA-assisted satellite systems. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar]
- Kibria, M.G.; Lagunas, E.; Maturo, N.; Spano, D.; Chatzinotas, S. Precoded cluster hopping in multi-beam high throughput satellite systems. In Proceedings of the 2019 IEEE Global Communications Conference, Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Ginesi, A.; Re, E.; Arapoglou, P.D. Joint beam hopping and precoding in HTS systems. In Proceedings of the 9th EAI International Conference on Wireless and Satellite Systems, Oxford, UK, 24–25 July 2017; pp. 43–51. [Google Scholar]
- Joroughi, V.; Lagunas, E.; Andrenacci, S.; Maturo, N.; Chatzinotas, S.; Grotz, J.; Ottersten, B. Deploying joint beam hopping and precoding in multibeam satellite networks with time variant traffic. In Proceedings of the IEEE Global Conference on Signal and Information Processing, Anaheim, CA, USA, 26–28 November 2018; pp. 1–6. [Google Scholar]
- Laster, J.D.; Stutzman, W.L. Frequency scaling of rain attenuation for satellite communication Links. IEEE Trans. Antennas Propag. 1995, 43, 1207–1216. [Google Scholar] [CrossRef]
- Panagopoulos, A.D.; Kanellopoulos, J.D. On the rain attenuation dynamics: Spatial-temporal analysis of rainfall-rate and fade duration statistics. Int. J. Satell. Commun. Netw. 2003, 21, 595–611. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithm in Search, Optimization, and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Chronopoulos, S.K.; Koliopanos, C.; Angelis, C.T. Satellite multibeam signaling for multimedia services. In Proceedings of the International Conference on Mobile Multimedia Communications, Nafpaktos, Greece, 27–29 August 2007; pp. 1–4. [Google Scholar]
- Angeletti, P.; Prim, F.D.; Rinaldo, R. Beam hopping in multi-beam broadband satellite systems: System performance and payload architecture analysis. In Proceedings of the 24th AIAA International Communications Satellite Systems Conference, San Diego, CA, USA, 11–14 June 2006; pp. 1–6. [Google Scholar]
- Feltrin, E.; Amos, S.; Fenech, H.; Weller, E. Eutelsat QUANTUM-class satellite: Beam hopping. In Proceedings of the 3rd ESA Workshop on Advanced Flexible Telecom Payloads, Noordwijk, The Netherlands, 21–24 March 2016; pp. 1–6. [Google Scholar]
- Chronopoulos, S.K.; Angelis, C.T.; Koumasis, A.; Drakou, P. Satellite coverage analysis for the investigation of real-time communication in selected areas. WSEAS Trans. Commun. 2006, 5, 1965–1972. [Google Scholar]
- Vázquez, M.Á.; Perez-Neira, A.; Christopoulos, D.; Chatzinotas, S.; Ottersten, B.; Arapoglou, P.D.; Ginesi, A.; Taricco, G. Precoding in multibeam satellite communications: Present and future challenges. IEEE Wirel. Commun. 2015, 23, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Christopoulos, D.; Chatzinotas, S.; Ottersten, B. Multicast multigroup precoding and user scheduling for frame-based satellite communications. IEEE Trans. Wirel. Commun. 2015, 14, 4695–4707. [Google Scholar] [CrossRef] [Green Version]
- Perez-Neira, A.I.; Vazquez, M.A.; Shankar, M.B.; Maleki, S.; Chatzinotas, S. Signal processing for high throughput satellite systems: Challenges in new interference-limited scenarios. IEEE Signal Process. Mag. 2018, 36, 112–131. [Google Scholar] [CrossRef] [Green Version]
- Sunil, P.; Chris, M.; Janet, K. Beam hopping–a flexible satellite communication system for mobility. In Proceedings of the 35th AIAA International Communications Satellite Systems Conference, Trieste, Italy, 16–19 October 2017. [Google Scholar]
- Boulanger, X.; Feral, L.; Castanet, L.; Jeannin, N.; Carrie, G.; Lacoste, F. A rain attenuation time-series synthesizer based on a Dirac and lognormal distribution. IEEE Trans. Antennas Propag. 2013, 61, 1396–1406. [Google Scholar] [CrossRef]
- ITU-R Recommendation P.618-10: Propagation Data and Prediction Methods Required for the Design of Earth-Space Telecommunication Systems; Technical Report; International Telecommunication Union: Geneva, Switzerland, 2009.
- Lei, J. Multi-Beam Satellite Resource Allocation Optimization for Beam Hopping Transmission. Ph.D. Thesis, Autonomous University of Barcelona, Barcelona, Spain, 29 September 2010. [Google Scholar]
- Wang, L.; Hu, X.; Ma, S.; Xu, S.; Wang, W. Dynamic beam hopping of multi-beam satellite based on genetic algorithm. In Proceedings of the IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, Exeter, UK, 17–19 December 2020; pp. 1364–1370. [Google Scholar]
- Li, W.; Chen, J.; Shi, X.; Liu, A. An optimization beam-position selection method based on genetic algorithm for Distributed Satellite-borne SAR system. In Proceedings of the IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; pp. 895–898. [Google Scholar]
- ITU-R S.672-4: Satellite Antenna Radiation Pattern for Use as a Design Objective in the Fixed-Satellite Services Employing Geostationary Satellites; Technical Report; International Telecommunication Union: Geneva, Switzerland, 1997.
- Carrie, G.; Lacoste, F.; Castanet, L. A new ‘event-on-demand’ synthesizer of rain attenuation time series at Ku-, Ka- and Q/V-bands. Int. J. Satell. Commun. Netw. 2011, 29, 47–60. [Google Scholar] [CrossRef]
Parameter | Label | Value |
---|---|---|
Transmission standard Beams number | - | DVB-S2X 5 |
Total bandwith | 400 Mhz | |
Beam hopping time slot | T | 100 ms |
Beam hopping period | W | 256 |
Transmitter power | P | 100 W |
Carrier frequency | 20 GHz | |
Roll-off | α | 0.05 |
Altitude of satellite orbit | H | 35,786 km |
Transmit antenna gain | 54 dB | |
Receive antenna gain | 38.5 dB | |
Propagation loss | 210 dB | |
Traffic demand of each beam | - | [70, 530, 550, 600, 320] Mbps |
Maximum rain attenuation of each beam | - | [35.8, 19, 11.65, 6.43, 23] dB |
Parameter | Value |
---|---|
Crossover probability | 0.6 |
Mutation probability | 0.02 |
Chromosome length | 3 |
Population | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Yang, J.; Zhang, Y.; Liu, Z.; Zhang, G. Dynamic Beam Hopping Time Slots Allocation Based on Genetic Algorithm of Satellite Communication under Time-Varying Rain Attenuation. Electronics 2021, 10, 2909. https://doi.org/10.3390/electronics10232909
Zhang C, Yang J, Zhang Y, Liu Z, Zhang G. Dynamic Beam Hopping Time Slots Allocation Based on Genetic Algorithm of Satellite Communication under Time-Varying Rain Attenuation. Electronics. 2021; 10(23):2909. https://doi.org/10.3390/electronics10232909
Chicago/Turabian StyleZhang, Chen, Jiangtao Yang, Yong Zhang, Ziwei Liu, and Gengxin Zhang. 2021. "Dynamic Beam Hopping Time Slots Allocation Based on Genetic Algorithm of Satellite Communication under Time-Varying Rain Attenuation" Electronics 10, no. 23: 2909. https://doi.org/10.3390/electronics10232909
APA StyleZhang, C., Yang, J., Zhang, Y., Liu, Z., & Zhang, G. (2021). Dynamic Beam Hopping Time Slots Allocation Based on Genetic Algorithm of Satellite Communication under Time-Varying Rain Attenuation. Electronics, 10(23), 2909. https://doi.org/10.3390/electronics10232909