An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies
Abstract
:1. Introduction
2. Formulation
2.1. Eigenvalue Problem
2.2. Photonic System Eigenproblem and Its Linearization Approaches
2.2.1. Recursive Formulation
2.2.2. Auxiliary Field-Based Formulation
2.3. Polynomial Linearization
3. Investigation of Field Penetration in Metals
3.1. Penetration Depth at 0.1–10 THz
3.2. Penetration Depth at 10–750 THz
4. Numerical Results
4.1. Rectangular Patch Antenna at 0.1–3 THz
4.2. Plasmonic Nanoantenna at 400–600 THz
Plasmonic Nanoantenna Radiation Efficiency—Volume Current
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Systems, C. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, White Paper 2017–2022. 2019. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html (accessed on 12 November 2021).
- Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025. 2019. Available online: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 12 November 2021).
- Calvanese Strinati, E.; Barbarossa, S.; Gonzalez-Jimenez, J.L.; Ktenas, D.; Cassiau, N.; Maret, L.; Dehos, C. 6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE Veh. Technol. Mag. 2019, 14, 42–50. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Nauman, A.; Abbasi, M.A.B.; Kim, S.W. Antenna Selection and Designing for THz Applications: Suitability and Performance Evaluation: A Survey. IEEE Access 2020, 8, 113246–113261. [Google Scholar] [CrossRef]
- Mukherjee, P.; Gupta, B. Terahertz (THz) Frequency Sources and Antennas—A Brief Review. Int. J. Infrared Millim. Waves 2008, 29, 1091–1102. [Google Scholar] [CrossRef]
- Jha, K.R.; Singh, G. Terahertz planar antennas for future wireless communication: A technical review. Infrared Phys. Technol. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Commun. 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Frascolla, V.; Bazzi, W.; Sicker, D.C. Terahertz-Enabled Wireless System for Beyond-5G Ultra-Fast Networks: A Brief Survey. IEEE Netw. 2019, 33, 89–95. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.S. Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems. IEEE Open J. Commun. Soc. 2020, 1, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Terahertz Interest Group, IEEEStandard802.15. Available online: Http://www.ieee802.org/15/pub/IGthzOLD.html (accessed on 12 November 2021).
- International Telecommunication Union. Technology Trends of Active Services in the Frequency Range 275–3000 GHz; Recommendation ITU-R, Document SM.2352-0; International Telecommunication Union: Geneva, Switzerland, 2015. [Google Scholar]
- Matin, M.A. Review on Millimeter Wave Antennas- Potential Candidate for 5G Enabled Applications. Adv. Electromagn. 2016, 5, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Dixit, A.S.; Malekar, R.R.; Raut, H.D.; Shevada, L.K. Fifth Generation Antennas: A Comprehensive Review of Design and Performance Enhancement Techniques. IEEE Access 2020, 8, 163568–163593. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, G. Rectangular Microstirp Patch Antenna Design at THz Frequency for Short Distance Wireless Communication Systems. J. Infrared Millim. Terahertz Waves 2008, 30, 1. [Google Scholar] [CrossRef]
- Singh, G. Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 2010, 53, 17–22. [Google Scholar] [CrossRef]
- Tamagnone, M.; Gómez-Díaz, J.S.; Mosig, J.R.; Perruisseau-Carrier, J. Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J. Appl. Phys. 2012, 112, 114915. [Google Scholar] [CrossRef] [Green Version]
- Esquius-Morote, M.; Gómez-Díaz, J.S.; Perruisseau-Carrier, J. Sinusoidally Modulated Graphene Leaky-Wave Antenna for Electronic Beamscanning at THz. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Diaz, J.S.; Moldovan, C.; Capdevila, S.; Romeu, J.; Bernard, L.S.; Magrez, A.; Ionescu, A.M.; Perruisseau-Carrier, J. Self-biased reconfigurable graphene stacks for terahertz plasmonics. Nat. Commun. 2015, 6, 6334. [Google Scholar] [CrossRef]
- Palaferri, D.; Todorov, Y.; Chen, Y.N.; Madeo, J.; Vasanelli, A.; Li, L.H.; Davies, A.G.; Linfield, E.H.; Sirtori, C. Patch antenna terahertz photodetectors. Appl. Phys. Lett. 2015, 106, 161102. [Google Scholar] [CrossRef]
- Piccoli, R.; Rovere, A.; Toma, A.; Morandotti, R.; Razzari, L. Terahertz Nanoantennas for Enhanced Spectroscopy, Terahertz Spectroscopy—A Cutting Edge Technology; IntechOpen: London, UK, 2017; Chapter 2. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, A.S.; Mittal, D.; Sidhu, E. THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Optik 2017, 144, 634–641. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S. Design and Performance Investigation of Miniaturized Multi-Wideband Patch Antenna for Multiple Terahertz Applications. Photonics Nanostruct.—Fundam. Appl. 2021, 44, 100900. [Google Scholar] [CrossRef]
- Dash, S.; Patnaik, A. Material selection for THz antennas. Microw. Opt. Technol. Lett. 2018, 60, 1183–1187. [Google Scholar] [CrossRef]
- Zhengtong, L.; Alexandra, B.; Rasmus, H.P.; Reuben, B.; Alexander, V.K.; Vladimir, P.D.; Vladimir, M.S. Plasmonic nanoantenna arrays for the visible. Metamaterials 2008, 2, 45–51. [Google Scholar] [CrossRef]
- Belacel, C.; Habert, B.; Bigourdan, F.; Marquier, F.; Hugonin, J.P.; Michaelis de Vasconcellos, S.; Lafosse, X.; Coolen, L.; Schwob, C.; Javaux, C.; et al. Controlling Spontaneous Emission with Plasmonic Optical Patch Antennas. Nano Lett. 2013, 13, 1516–1521. [Google Scholar] [CrossRef] [Green Version]
- Barbillon, G. Nanoplasmonics—Fundamentals and Applications; InTech: London, UK, 2017; pp. 3–481. ISBN 978-953-51-3278-3. [Google Scholar]
- Lu, G.; Xu, J.; Wen, T.; Zhang, W.; Zhao, J.; Hu, A.; Barbillon, G.; Gong, Q. Hybrid Metal-Dielectric Nano-Aperture Antenna for Surface Enhanced Fluorescence. Materials 2018, 11, 1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Hugonin, J.P.; Greffet, J.J.; Sauvan, C. Surface Plasmon Polaritons Emission with Nanopatch Antennas: Enhancement by Means of Mode Hybridization. ACS Photonics 2019, 6, 2788–2796. [Google Scholar] [CrossRef]
- Sakat, E.; Wojszvzyk, L.; Greffet, J.J.; Hugonin, J.P.; Sauvan, C. Enhancing Light Absorption in a Nanovolume with a Nanoantenna: Theory and Figure of Merit. ACS Photonics 2020, 7, 1523–1528. [Google Scholar] [CrossRef]
- Crozier, K.B.; Sundaramurthy, A.; Kino, G.S.; Quate, C.F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 2003, 94, 4632–4642. [Google Scholar] [CrossRef]
- de Arquer, F.P.G.; Volski, V.; Verellen, N.; Vandenbosch, G.A.E.; Moshchalkov, V.V. Engineering the Input Impedance of Optical Nano Dipole Antennas: Materials, Geometry and Excitation Effect. IEEE Trans. Antennas Propag. 2011, 59, 3144–3153. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Theory, Modeling and Features of Optical Nanoantennas. IEEE Trans. Antennas Propag. 2013, 61, 1508–1517. [Google Scholar] [CrossRef]
- Regmi, R.; Berthelot, J.; Winkler, P.M.; Mivelle, M.; Proust, J.; Bedu, F.; Ozerov, I.; Begou, T.; Lumeau, J.; Rigneault, H.; et al. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. Nano Lett. 2016, 16, 5143–5151. [Google Scholar] [CrossRef] [Green Version]
- Patri, A.; Cognée, K.G.; Haeberlé, L.; Menon, V.; Caloz, C.; Kéna-Cohen, S. Photonic Gap Antennas Based on High Index-Contrast Slot-Waveguides. arXiv 2021, arXiv:2103.08814. [Google Scholar] [CrossRef]
- Monticone, F.; Alù, A. Leaky-Wave Theory, Techniques, and Applications: From Microwaves to Visible Frequencies. Proc. IEEE 2015, 103, 793–821. [Google Scholar] [CrossRef]
- Unal, G.S.; Aksun, M.I. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model. Sci. Rep. 2015, 5, 15941. [Google Scholar] [CrossRef] [Green Version]
- Syed, W.H.; Fiorentino, G.; Cavallo, D.; Spirito, M.; Sarro, P.M.; Neto, A. Design, Fabrication, and Measurements of a 0.3 THz On-Chip Double Slot Antenna Enhanced by Artificial Dielectrics. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Lepeshov, S.; Gorodetsky, A.; Krasnok, A.; Toropov, N.; Vartanyan, T.A.; Belov, P.; Alú, A.; Rafailov, E.U. Boosting Terahertz Photoconductive Antenna Performance with Optimised Plasmonic Nanostructures. Sci. Rep. 2018, 8, 6624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alù, A.; Krishnaswamy, H. Artificial nonreciprocal photonic materials at GHz-to-THz frequencies. MRS Bull. 2018, 43, 436–442. [Google Scholar] [CrossRef]
- Barnes, W.L. Surface plasmon–polariton length scales: A route to sub-wavelength optics. J. Opt. A: Pure Appl. Opt. 2006, 8, S87–S93. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-0-387-33150-8. [Google Scholar]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Novotny, L. Effective Wavelength Scaling for Optical Antennas. Phys. Rev. Lett. 2007, 98, 266802. [Google Scholar] [CrossRef] [Green Version]
- Greffet, J.J.; Laroche, M.; Marquier, F.M.C. Impedance of a Nanoantenna and a Single Quantum Emitter. Phys. Rev. Lett. 2010, 105, 117701. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Input Impedance, Nanocircuit Loading, and Radiation Tuning of Optical Nanoantennas. Phys. Rev. Lett. 2008, 101, 043901. [Google Scholar] [CrossRef] [Green Version]
- Alù, A.; Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat. Photonics 2008, 2, 307–310. [Google Scholar] [CrossRef]
- Engheta, N.; Salandrino, A.; Alù, A. Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors. Phys. Rev. Lett. 2005, 95, 095504. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Valev, V.K.; Verellen, N.; Volskiy, V.; Herrmann, L.O.; Van Dorpe, P.; Baumberg, J.J.; Vandenbosch, G.A.E.; Moschchalkov, V.V. Implementation of the Natural Mode Analysis for Nanotopologies Using a Volumetric Method of Moments (V-MoM) Algorithm. IEEE Photonics J. 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Paschaloudis, K.D.; Zekios, C.L.; Ghisa, L.; Allilomes, P.C.; Zoiros, K.E.; Sharaiha, A.; Iezekiel, S.; Kyriacou, G.A. An Eigenanalysis Study of Tunable THz and Photonic Unbounded Structures Employing Finite Element Method. IEEE Photonics J. 2019, 11, 1–20. [Google Scholar] [CrossRef]
- Rogier, H.; Zutter, D.D. Berenger and Leaky Modes in Optical Fibers Terminated With a Perfectly Matched Layer. J. Lightwave Technol. 2002, 20, 1141. [Google Scholar] [CrossRef]
- Zekios, C.L.; Allilomes, P.C.; Kyriacou, G.A. DC and Imaginary Spurious Modes Suppression for Both Unbounded and Lossy Structures. IEEE Trans. Microw. Theory Tech. 2015, 63, 2082–2093. [Google Scholar] [CrossRef]
- Zhu, Y.; Cangellaris, A.C. Multigrid Finite Element Methods for Electromagnetic Field Modeling; IEEE Press: Piscataway, NJ, USA, 2006. [Google Scholar]
- Volakis, J.L.; Chatterjee, A.; Kempel, L.C. Finite Element Method for Electromagnetics: Antennas, Microwave Circuits And Scattering Applications; Series on Electromagnetic Wave Theory; IEEE Press: Piscataway, NJ, USA, 1996. [Google Scholar]
- Joseph, R.M.; Hagness, S.C.; Taflove, A. Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. Opt. Lett. 1991, 16, 1412–1414. [Google Scholar] [CrossRef] [PubMed]
- Zimmerling, J.; Wei, L.; Urbach, P.; Remis, R. A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media. J. Comput. Phys. 2016, 315, 348–362. [Google Scholar] [CrossRef]
- Raman, A.; Fan, S. Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem. Phys. Rev. Lett. 2010, 104, 087401. [Google Scholar] [CrossRef]
- Lalanne, P.; Yan, W.; Vynck, K.; Sauvan, C.; Hugonin, J.P. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev. 2018, 12, 1700113. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Faggiani, R.; Lalanne, P. Rigorous modal analysis of plasmonic nanoresonators. Phys. Rev. B 2018, 97, 205422. [Google Scholar] [CrossRef] [Green Version]
- Higham, N.J.; Mackey, D.S.; Mackey, N.; Tisseur, F. Symmetric Linearizations for Matrix Polynomials. SIAM J. Matrix Anal. Appl. 2007, 29, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Saad, Y. Numerical Methods for Large Eigenvalue Problems, 2nd ed.; Series in Algorithms and Architectures for Advanced Scientific Computing; Manchester University Press: Manchester, UK, 2011. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Hejase, J.A.; Paladhi, P.R.; Chahal, P.P. Terahertz Characterization of Dielectric Substrates for Component Design and Nondestructive Evaluation of Packages. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 1685–1694. [Google Scholar] [CrossRef]
- Biagioni, P.; Huang, J.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402. [Google Scholar] [CrossRef] [Green Version]
- Corporation, R. RO3000©Series Circuit Materials RO3003TM, RO3006TM, RO3010TM and RO3035TM High Frequency Laminates. Available online: https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-electronics-solutions/english/datasheets/ro3000-laminate-data-sheet-ro3003----ro3006----ro3010----ro3035.pdf (accessed on 12 November 2021).
- Pessoa, L. Report on the Design and Simulation of THz Integrated Antennas; Technical Report; 2019. Available online: https://terapod-project.eu/wp-content/uploads/2019/05/TERAPOD-D3.4-Report-design-and-simulation-of-THz-integ-antennas.pdf (accessed on 12 November 2021).
- Rabbani, M.S.; Ghafouri-Shiraz, H. Liquid Crystalline Polymer Substrate-Based THz Microstrip Antenna Arrays for Medical Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1533–1536. [Google Scholar] [CrossRef]
- Yang, H.U.; D’Archangel, J.; Sundheimer, M.L.; Tucker, E.; Boreman, G.D.; Raschke, M.B. Optical dielectric function of silver. Phys. Rev. B 2015, 91, 235137. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.; Hoang, T.B.; McGuire, F.; Mock, J.J.; Ciracì, C.; Smith, D.R.; Mikkelsen, M.H. Control of Radiative Processes Using Tunable Plasmonic Nanopatch Antennas. Nano Lett. 2014, 14, 4797–4802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campione, S.; Warne, L.K.; Goldflam, M.D.; Peters, D.W.; Sinclair, M.B. Improved quantitative circuit model of realistic patch-based nanoantenna-enabled detectors. J. Opt. Soc. Am. B 2018, 35, 2144–2152. [Google Scholar] [CrossRef]
- Systemes, D. CST—Studio Suite. 2016. Available online: www.cst.com (accessed on 12 November 2021).
- Balanis, C.A. Advanced Engineering Electromagnetics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1989. [Google Scholar]
No | [THz] | [THz] | [THz] | [THz] |
---|---|---|---|---|
1 | 0.770 + j0.330 | 0.781 + j0.387 | 0.799 + j0.433 | 0.778 + j0.332 |
2 | 0.802 + j0.051 | 0.813 + j0.059 | 0.815 + j0.058 | 0.793 + j0.036 |
3 | 0.947 + j0.386 | 0.960 + j0.453 | 0.958 + j0.440 | 0.951 + j0.371 |
4 | 1.038 + j0.103 | 1.037 + j0.088 | - | 1.040 + j0.084 |
5 | 1.171 + j0.170 | 1.187 + j0.200 | - | 1.181 + j0.200 |
6 | - | - | - | 1.314 + j0.042 |
7 | 1.408 + j0.089 | 1.439 + j0.092 | 1.441 + j0.083 | 1.438 + j0.109 |
8 | 1.506 + j0.101 | 1.495 + j0.777 | 1.501 + j0.847 | 1.490 + j0.098 |
9 | 1.586 + j0.691 | 1.590 + j0.628 | 1.589 + j0.630 | 1.571 + j0.725 |
10 | 1.617 + j0.731 | 1.717 + j0.321 | - | 1.685 + j0.636 |
Plasmonic Nanoantenna | Substrate | |||
---|---|---|---|---|
No | ||||
1 | 9.451 + j4.102 | 664.8 | 9.425 + j4.061 | 666.7 |
2 | 9.488 + j3.693 | 662.2 | 9.437 + j3.950 | 665.8 |
3 | 9.506 + j3.899 | 661.3 | - | - |
4 | 9.938 + j4.197 | 632.2 | - | - |
5 | 12.210 + j3.273 | 514.6 | 12.166 + j3.545 | 516.5 |
6 | 12.226 + j3.403 | 513.9 | 12.193 + j3.395 | 515.3 |
7 | 12.290 + j3.649 | 511.2 | 12.202 + j3.369 | 514.9 |
8 | 12.321 + 3.656 | 510.0 | 12.264 + j3.672 | 512.3 |
9 | 12.395 + j3.310 | 506.9 | 12.419 + j3.452 | 505.9 |
10 | 12.455 + j3.428 | 504.5 | 12.445 + j3.498 | 504.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paschaloudis, K.D.; Zekios, C.L.; Trichopoulos, G.C.; Farmakis, F.; Kyriacou, G.A. An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies. Electronics 2021, 10, 2782. https://doi.org/10.3390/electronics10222782
Paschaloudis KD, Zekios CL, Trichopoulos GC, Farmakis F, Kyriacou GA. An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies. Electronics. 2021; 10(22):2782. https://doi.org/10.3390/electronics10222782
Chicago/Turabian StylePaschaloudis, Konstantinos D., Constantinos L. Zekios, Georgios C. Trichopoulos, Filippos Farmakis, and George A. Kyriacou. 2021. "An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies" Electronics 10, no. 22: 2782. https://doi.org/10.3390/electronics10222782
APA StylePaschaloudis, K. D., Zekios, C. L., Trichopoulos, G. C., Farmakis, F., & Kyriacou, G. A. (2021). An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies. Electronics, 10(22), 2782. https://doi.org/10.3390/electronics10222782