Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification
Abstract
:1. Introduction
2. State-of-the-Art Approaches to ICH Diagnosis
3. Proposed Methodology
3.1. TEGOA-Based Segmentation Process
3.2. DenseNet Based Feature Extraction Process
3.3. ELM-Based Classification Process
4. Experimental Validation
4.1. Implementation Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qureshi, A.I.; Mendelow, A.D.; Hanley, D.F. Intracerebral haemorrhage. Lancet 2009, 373, 1632–1644. [Google Scholar] [CrossRef] [Green Version]
- Mayer, S.A.; Kreiter, K.T.; Copeland, D.; Bernardini, G.L.; Bates, J.E.; Peery, S.; Claassen, J.; Du, Y.E.; Connolly, E.S. Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology 2002, 59, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Hylek, E.M.; Singer, D.E. Risk factors for intracranial hemorrhage in outpatients taking warfarin. Ann. Intern. Med. 1994, 120, 897–902. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Wang, Y.; Zhu, X.; Li, M.; Wang, X.; Chen, Y. Segmentation of intracerebral hemorrhage based on improved U-Net. In Proceedings of the 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 11–13 December 2020; pp. 183–185. [Google Scholar]
- Dong, J.; Shi, F. Multi-dimensional data analysis of intracerebral hemorrhage from CT images. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; pp. 406–409. [Google Scholar]
- Davis, V.; Devane, S. Diagnosis & classification of brain hemorrhage. In Proceedings of the 2017 International Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai, India, 1–2 December 2017; pp. 1–6. [Google Scholar]
- Shanbhag, S.S.; Udupi, G.R.; Patil, K.M.; Ranganath, K. Analysis of brain MRI images of intracerebral haemorrhage using frequency domain technique. In Proceedings of the 2011 International Conference on Image Information Processing, Shimla, India, 3–5 November 2011; pp. 1–5. [Google Scholar]
- Amir, N.S.B.S.; Chellappan, K.; Kang, L.Z.; Mukari, S.; Sahathevan, R. MR image enhancement for ICH classification. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–7 December 2016; pp. 160–165. [Google Scholar]
- Ghafaryasl, B.; van der Lijn, F.; Poels, M.; Vrooman, H.; Ikram, M.A.; Niessen, W.J.; van der Lugt, A.; Vernooij, M.; de Bruijne, M. A computer aided detection system for cerebral microbleeds in brain MRI. In Proceedings of the 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2–5 May 2012; pp. 138–141. [Google Scholar]
- Yuh, E.L.; Gean, A.D.; Manley, G.T.; Callen, A.L.; Wintermark, M. Computer-Aided Assessment of Head Computed Tomography (CT) Studies in Patients with Suspected Traumatic Brain Injury. J. Neurotrauma 2008, 25, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, J.; Li, H.; Li, D.; Du, X.; Chen, Z.; Jia, F.; Hu, Q. Automatic Detection of the Existence of Subarachnoid Hemorrhage from Clinical CT Images. J. Med. Syst. 2012, 36, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.; Häne, C.; Yuh, E.; Mukherjee, P.; Malik, J. Cost-Sensitive active learning for intracranial hemorrhage detection. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2018; Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 715–723. [Google Scholar]
- Prevedello, L.M.; Erdal, B.S.; Ryu, J.L.; Little, K.J.; Demirer, M.; Qian, S.; White, R.D. Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology 2017, 285, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Chilamkurthy, S.; Ghosh, R.; Tanamala, S.; Biviji, M.; Campeau, N.G.; Venugopal, V.K.; Mahajan, V.; Rao, P.; Warier, P. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study. Lancet 2018, 392, 2388–2396. [Google Scholar] [CrossRef]
- Ye, H.; Gao, F.; Yin, Y.; Guo, D.; Zhao, P.; Lu, Y.; Wang, X.; Bai, J.; Cao, K.; Song, Q.; et al. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur. Radiol. 2019, 29, 6191–6201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grewal, M.; Srivastava, M.M.; Kumar, P.; Varadarajan, S. RADnet: Radiologist level accuracy using deep learning for hemorrhage detection in CT scans. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 281–284. [Google Scholar]
- Lee, H.; Yune, S.; Mansouri, M.; Kim, M.; Tajmir, S.; Guerrier, C.E.; Ebert, S.A.; Pomerantz, S.R.; Romero, J.M.; Kamalian, S.; et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat. Biomed. Eng. 2018, 3, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Jnawali, K.; Arbabshirani, M.R.; Rao, N.; Patel, A.A. Deep 3D convolution neural network for CT brain hemorrhage classification. In Medical Imaging 2018: Computer-Aided Diagnosis; SPIE: Washington, DC, USA, 2018; Volume 10575, p. 105751C. [Google Scholar]
- Rajinikanth, V.; Satapathy, S.C.; Fernandes, S.L.; Nachiappan, S. Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization. Pattern Recognit. Lett. 2017, 94, 87–95. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Jaiswal, A.; Gianchandani, N.; Singh, D.; Kumar, V.; Kaur, M. Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J. Biomol. Struct. Dyn. 2021, 39, 5682–5689. [Google Scholar] [CrossRef] [PubMed]
- Toprak, A. Extreme Learning Machine (ELM)-Based Classification of Benign and Malignant Cells in Breast Cancer. Med. Sci. Monit. 2018, 24, 6537–6543. [Google Scholar] [CrossRef]
- Hssayeni, M.D.; Croock, M.S.; Salman, A.D.; Al-Khafaji, H.F.; Yahya, Z.A.; Ghoraani, B. Intracranial Hemorrhage Segmentation Using a Deep Convolutional Model. Data 2020, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Elena, S.; Gina, S.; Sarina, F.; Danielle, M.; Twinkle, J.; Joseph, K.T.; Jickling, G.C. Hemorrhagic Transformation in Ischemic Stroke and the Role of of Inflammation. Front. Neurol. 2021, 12, 597. [Google Scholar]
- Danilov, G.; Kotik, K.; Negreeva, A.; Tsukanova, T.; Shifrin, M.; Zakharova, N.; Batalov, A.; Pronin, I.; Potapov, A. Classification of Intracranial Hemorrhage Subtypes Using Deep Learning on CT Scans. Stud. Health Technol. Inform. 2020, 272, 370–373. [Google Scholar] [PubMed]
- Karki, M.; Cho, J.; Lee, E.; Hahm, M.-H.; Yoon, S.-Y.; Kim, M.; Ahn, J.-Y.; Son, J.; Park, S.-H.; Kim, K.-H.; et al. CT window trainable neural network for improving intracranial hemorrhage detection by combining multiple settings. Artif. Intell. Med. 2020, 106, 101850. [Google Scholar] [CrossRef]
No. of Epochs | ||||
---|---|---|---|---|
Epoch-100 | 95.67 | 98.10 | 96.55 | 96.08 |
Epoch-200 | 94.82 | 97.75 | 95.98 | 96.15 |
Epoch-300 | 94.91 | 97.51 | 96.18 | 96.42 |
Epoch-400 | 95.12 | 97.34 | 96.27 | 96.30 |
Epoch-500 | 95.76 | 97.81 | 96.45 | 96.76 |
Average | 95.26 | 97.70 | 96.29 | 96.34 |
Methods | Computation Time (Sec) |
---|---|
DN-ELM | 29.00 |
U-Net | 42.00 |
WA-ANN | 78.00 |
ResNexT | 80.00 |
WEM-DCNN | 75.00 |
CNN | 74.00 |
SVM | 89.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santhoshkumar, S.; Varadarajan, V.; Gavaskar, S.; Amalraj, J.J.; Sumathi, A. Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification. Electronics 2021, 10, 2574. https://doi.org/10.3390/electronics10212574
Santhoshkumar S, Varadarajan V, Gavaskar S, Amalraj JJ, Sumathi A. Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification. Electronics. 2021; 10(21):2574. https://doi.org/10.3390/electronics10212574
Chicago/Turabian StyleSanthoshkumar, Sundar, Vijayakumar Varadarajan, S. Gavaskar, J. Jegathesh Amalraj, and A. Sumathi. 2021. "Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification" Electronics 10, no. 21: 2574. https://doi.org/10.3390/electronics10212574
APA StyleSanthoshkumar, S., Varadarajan, V., Gavaskar, S., Amalraj, J. J., & Sumathi, A. (2021). Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification. Electronics, 10(21), 2574. https://doi.org/10.3390/electronics10212574