Sensor System: A Survey of Sensor Type, Ad Hoc Network Topology and Energy Harvesting Techniques
Abstract
:1. Introduction
2. Wireless Sensor System
2.1. Heterogeneous Sensor System
2.2. Homogeneous Sensor System
3. Ad Hoc Network
4. Energy Harvesting System
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects. 2019. Available online: https://population.un.org/wpp/Download/Standard/Population/ (accessed on 30 December 2020).
- National Cable & Telecommunications Association/NCTA—The Internet & Television Association, United States. Behind the Numbers: Growth in the Internet of Things. Available online: https://www.ncta.com/whats-new/behind-the-numbers-growth-in-the-internet-of-things (accessed on 31 December 2020).
- Adu-Manu, K.; Tapparello, C.; Heinzelman, W.; Katsriku, F.; Abdulai, J.D. Water Quality Monitoring Using Wireless Sensor Networks: Current Trends and Future Research Directions. ACM Trans. Sens. Netw. 2017, 13, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kumar, S.; Kaiwartya, O. A Hybrid Localization Algorithm for Wireless Sensor Networks. In Proceedings of the 3rd International Conference on Recent Trends in Computing 2015 (ICRTC-2015), Ghaziabad, India, 12–13 March 2015; Volume 57. [Google Scholar] [CrossRef] [Green Version]
- Guruprasad, S.; Bisnath, S.; Lee, R.; Kozinski, J. Design and implementation of a low-cost SoC-based software GNSS receiver. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 14–19. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Villa-Medina, J.F.; Nieto-Garibay, A.; Porta-Gándara, M.A. Automated Irrigation System Using a Wireless Sensor Network and GPRS Module. IEEE Trans. Instrum. Meas. 2014, 63, 166–176. [Google Scholar]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Vavrinsky, E.; Subjak, J.; Donoval, M.; Wagner, A.; Zavodnik, T.; Svobodova, H. Application of Modern Multi-Sensor Holter in Diagnosis and Treatment. Sensors 2020, 20, 2663. [Google Scholar] [CrossRef]
- Bouain, M.; Ali, K.; Berdjag, D.; Fakhfakh, N.; Atitallah, R. An Embedded Multi-Sensor Data Fusion Design for Vehicle Perception Tasks. J. Commun. 2018, 13, 8–14. [Google Scholar] [CrossRef]
- Giacalone, J.; Bourgeois, L.; Ancora, A. Challenges in aggregation of heterogeneous sensors for Autonomous Driving Systems. In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March 2019; pp. 1–5. [Google Scholar]
- Nguyen, P.D.; Vo, H.Q.; Le, L.N.; Eo, S.; Kim, L. An IoT Hardware Platform Architecture for Monitoring Power Grid Systems based on Heterogeneous Multi-Sensors. Sensors 2020, 20, 6082. [Google Scholar] [CrossRef]
- Bartsch, M.S.; Federle, W.; Full, R.J.; Kenny, T.W. Small insect measurements using a custom MEMS force sensor. In Proceedings of the TRANSDUCERS ’03, 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA, 8–12 June 2003; Volume 2, pp. 1039–1042. [Google Scholar]
- Shih, B.; Drotman, D.; Christianson, C.; Huo, Z.; White, R.; Christensen, H.I.; Tolley, M.T. Custom soft robotic gripper sensor skins for haptic object visualization. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 494–501. [Google Scholar]
- Lambrou, T.P.; Anastasiou, C.C.; Panayiotou, C.G.; Polycarpou, M.M. A Low-Cost Sensor Network for Real-Time Monitoring and Contamination Detection in Drinking Water Distribution Systems. IEEE Sens. J. 2014, 14, 2765–2772. [Google Scholar] [CrossRef]
- Ledeczi, A.; Hay, T.; Volgyesi, P.; Hay, D.R.; Nadas, A.; Jayaraman, S. Wireless Acoustic Emission Sensor Network for Structural Monitoring. IEEE Sens. J. 2009, 9, 1370–1377. [Google Scholar] [CrossRef]
- Odat, E.; Shamma, J.S.; Claudel, C. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1593–1606. [Google Scholar] [CrossRef]
- Han, L.; Shen, Z.; Fu, C.; Liu, C. Design and Implementation of Sound Searching Robots in Wireless Sensor Networks. Sensors 2016, 16, 1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domajnko, D.; Kriẑaj, D. Lagging-Domain Model for Compensation of Hysteresis of xMR Sensors in Positioning Applications. Sensors 2018, 18, 2281. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.H.; Seo, J. Low-Cost Curb Detection and Localization System Using Multiple Ultrasonic Sensors. Sensors 2019, 19, 1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Wang, J.; Zhang, L.; Yu, Q.; Huang, Y.; Shen, Y. Magnetic Signature Analysis for Smart Security System Based on TMR Magnetic Sensor Array. IEEE Sens. J. 2019, 19, 3149–3155. [Google Scholar] [CrossRef]
- Liu, P.; Lim, H.J.; Yang, S.; Sohn, H.; Lee, C.H.; Yi, Y.; Kim, D.; Jung, J.; Bae, I.H. Development of a “stick-and-detect” wireless sensor node for fatigue crack detection. Struct. Health Monit. 2017, 16, 153–163. [Google Scholar] [CrossRef]
- Yang, S.; Jung, S.Y.; Kim, K.; Liu, P.; Lee, S.; Kim, J.; Sohn, H. Development of a tunable low-frequency vibration energy harvester and its application to a self-contained wireless fatigue crack detection sensor. Struct. Health Monit. 2019, 18, 920–933. [Google Scholar] [CrossRef]
- Nikhil, S.; Mohan, S.; Ramya, B.; Kadambi, G.R. Design and development of a DSP processor based reconfigurable hand Gesture Recognition System for real time applications. In Proceedings of the 2010 International Conference on Signal and Image Processing, Chennai, India, 15–17 December 2010; pp. 39–44. [Google Scholar] [CrossRef]
- Özdemir, A.T.; Barshan, B. Detecting Falls with Wearable Sensors Using Machine Learning Techniques. Sensors 2014, 14, 10691–10708. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Amin, S.; Zabit, U.; Bernal, O.D.; Bosch, T. A high performance real-time Interferometry Sensor System Architecture. Microprocess. Microsyst. 2019, 64, 23–33. [Google Scholar] [CrossRef]
- Younis, O.; Fahmy, S. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mob. Comput. 2004, 3, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Mhatre, V.P.; Rosenberg, C.; Kofman, D.; Mazumdar, R.; Shroff, N. A minimum cost heterogeneous sensor network with a lifetime constraint. IEEE Trans. Mob. Comput. 2005, 4, 4–15. [Google Scholar]
- Xu, K.; Hassanein, H.; Takahara, G.; Wang, Q. Relay Node Deployment Strategies in Heterogeneous Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2010, 9, 145–159. [Google Scholar]
- Ayinde, B.O.; Barnawi, A.Y. Differential evolution based deployment of wireless sensor networks. In Proceedings of the 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA), Doha, Qatar, 10–14 November 2014; pp. 131–137. [Google Scholar]
- Kuawattanaphan, R.; Champrasert, P.; Aramkul, S. A Novel Heterogeneous Wireless Sensor Node Deployment Algorithm With Parameter-Free Configuration. IEEE Access 2018, 6, 44951–44969. [Google Scholar] [CrossRef]
- Takabe, S.; Wadayama, T. Approximation Theory for Connectivity of Ad Hoc Wireless Networks With Node Faults. IEEE Wirel. Commun. Lett. 2019, 8, 1240–1243. [Google Scholar] [CrossRef]
- Suganthi, K.; Sundaram, V.B. A constraint based relay node deployment in heterogeneous wireless sensor networks for lifetime maximization. In Proceedings of the 2012 Fourth International Conference on Advanced Computing (ICoAC), Chennai, India, 13–15 December 2012; pp. 1–6. [Google Scholar]
- Dhand, G.; Tyagi, S. Data Aggregation Techniques in WSN:Survey. Procedia Comput. Sci. 2016, 92, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Geethapriya, K.P.; Kala, I.; Karthik, S. A study on data aggregation scheme over wireless sensor network. In Proceedings of the 2016 10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 7–8 January 2016; pp. 1–5. [Google Scholar]
- Li, X.; Liu, W.; Xie, M.; Liu, A.; Zhao, M.; Xiong, N.N.; Zhao, M.; Dai, W. Differentiated Data Aggregation Routing Scheme for Energy Conserving and Delay Sensitive Wireless Sensor Networks. Sensors 2018, 18, 2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siva Ranjani, S.; Radha Krishnan, S.; Thangaraj, C. Energy-efficient Cluster Based Data Aggregation for Wireless Sensor Networks. In Proceedings of the 2012 International Conference on Recent Advances in Computing and Software Systems, Chennai, India, 25–27 April 2012; pp. 174–179. [Google Scholar]
- Poekaew, P.; Champrasert, P. Adaptive-PCA: An event-based data aggregation using principal component analysis for WSNs. In Proceedings of the 2015 International Conference on Smart Sensors and Application (ICSSA), Kuala Lumpur, Malaysia, 26–28 May 2015; pp. 50–55. [Google Scholar]
- Li, J.; Guo, S.; Yang, Y.; He, J. Data Aggregation with Principal Component Analysis in Big Data Wireless Sensor Networks. In Proceedings of the 2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Hefei, China, 16–18 December 2016; pp. 45–51. [Google Scholar] [CrossRef]
- Anzola, J.; Pascual, J.; Tarazona, G.; González Crespo, R. A Clustering WSN Routing Protocol Based on k-d Tree Algorithm. Sensors 2018, 18, 2899. [Google Scholar] [CrossRef] [Green Version]
- Tom, J.; Kaźmierski, S.B. Energy Harvesting Systems Principles, Modeling and Applications, 1st ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kirstein, T. Multidisciplinary Know-How for Smart-Textiles Developers; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Jiang, X.; Polastre, J.; Culler, D. Perpetual environmentally powered sensor networks. In Proceedings of the IPSN 2005, Fourth International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, USA, 24–27 April 2005; pp. 463–468. [Google Scholar]
- Simjee, F.I.; Chou, P.H. Efficient Charging of Supercapacitors for Extended Lifetime of Wireless Sensor Nodes. IEEE Trans. Power Electron. 2008, 23, 1526–1536. [Google Scholar] [CrossRef]
- Raghunathan, V.; Kansal, A.; Hsu, J.; Friedman, J.; Mani, S. Design considerations for solar energy harvesting wireless embedded systems. In Proceedings of the IPSN 2005, Fourth International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, USA, 24–27 April 2005; pp. 457–462. [Google Scholar]
- Sharma, H.; Haque, A.; Jaffery, Z.A. Modeling and Optimisation of a Solar Energy Harvesting System for Wireless Sensor Network Nodes. J. Sens. Actuator Netw. 2018, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, H.; Chen, X.; Bukhari, A.A.S.; Cao, W.; Chai, L.; Li, B. High Efficiency Solar Power Generation with Improved Discontinuous Pulse Width Modulation (DPWM) Overmodulation Algorithms. Energies 2019, 12, 1765. [Google Scholar] [CrossRef] [Green Version]
- Mekikis, P.; Kartsakli, E.; Antonopoulos, A.; Alonso, L.; Verikoukis, C. Connectivity Analysis in Clustered Wireless Sensor Networks Powered by Solar Energy. IEEE Trans. Wirel. Commun. 2018, 17, 2389–2401. [Google Scholar] [CrossRef] [Green Version]
- Gatti, G.; Brennan, M.; Tehrani, M.; Thompson, D. Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator. Mech. Syst. Signal Process. 2016, 66–67, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, H.; Zhang, Y.; Li, C.; Yang, Q.; Zheng, H.; Lu, C. Mechanical Energy Harvesting From Road Pavements Under Vehicular Load Using Embedded Piezoelectric Elements. J. Appl. Mech. 2016, 83, 081001. [Google Scholar] [CrossRef]
- Han, Y.; Feng, Y.; Yu, Z.; Lou, W.; Liu, H. A Study on Piezoelectric Energy-Harvesting Wireless Sensor Networks Deployed in a Weak Vibration Environment. IEEE Sens. J. 2017, 17, 6770–6777. [Google Scholar] [CrossRef]
- Chamanian, S.; Uluşan, H.; Özge, Z.; Baghaee, S.; Uysal-Biyikoglu, E.; Külah, H. Wearable battery-less wireless sensor network with electromagnetic energy harvesting system. Sens. Actuators A Phys. 2016, 249, 77–84. [Google Scholar] [CrossRef]
- Kim, S.; Vyas, R.; Bito, J.; Niotaki, K.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms. Proc. IEEE 2014, 102, 1649–1666. [Google Scholar] [CrossRef]
- Tang, X.; Wang, X.; Cattley, R.; Gu, F.; Ball, A.D. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors 2018, 18, 4113. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Weddell, A.S.; Merrett, G.V.; Kazmierski, T.J.; Al-Hashimi, B.M. Accurate Supercapacitor Modeling for Energy Harvesting Wireless Sensor Nodes. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 911–915. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, N.; Vinco, A.; Siddique, R.; Hayes, M.; O’Flynn, B.; O’Mathuna, C. Super-capacitor and Thin Film Battery Hybrid Energy Storage for Energy Harvesting Applications. J. Phys. Conf. Ser. 2013, 476, 012105. [Google Scholar] [CrossRef]
- Fahmy, H.M.A. Energy Harvesting in WSNs. In Wireless Sensor Networks: Energy Harvesting and Management for Research and Industry; Springer: Berlin/Heidelberg, Germany, 2020; pp. 41–99. [Google Scholar] [CrossRef]
- Frezzetti, A.; Manfredi, S. Design and experimental testing of an optimization-based flow control algorithm for Energy Harvesting Wireless Sensor Networks. Control. Eng. Pract. 2019, 92, 104075. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Z.; Zhou, H.; Chen, L.; Shen, X. Energy-balanced cooperative transmission based on relay selection and power control in energy harvesting wireless sensor network. Comput. Netw. 2016, 104, 189–197. [Google Scholar] [CrossRef]
- Vigorito, C.M.; Ganesan, D.; Barto, A.G. Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks. In Proceedings of the 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Diego, CA, USA, 18–21 June 2007; pp. 21–30. [Google Scholar]
- Sharma, A.; Kakkar, A. Forecasting daily global solar irradiance generation using machine learning. Renew. Sustain. Energy Rev. 2018, 82, 2254–2269. [Google Scholar] [CrossRef]
- Kosunalp, S. A New Energy Prediction Algorithm for Energy-Harvesting Wireless Sensor Networks With Q-Learning. IEEE Access 2016, 4, 5755–5763. [Google Scholar] [CrossRef]
- Connell, J.H.; Mahadevan, S. ROBOT LEARNING. Robotica 1999, 17, 229–235. [Google Scholar]
- Chen, H.; Li, X.; Zhao, F. A Reinforcement Learning-Based Sleep Scheduling Algorithm for Desired Area Coverage in Solar-Powered Wireless Sensor Networks. IEEE Sens. J. 2016, 16, 2763–2774. [Google Scholar] [CrossRef]
- Liu, C.; Hsu, R.C. Dynamic power management utilizing reinforcement learning with fuzzy reward for energy harvesting wireless sensor nodes. In Proceedings of the IECON 2011—37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Victoria, Australia, 7–10 November 2011; pp. 2365–2369. [Google Scholar]
- Hsu, R.C.; Liu, C.; Wang, H. A Reinforcement Learning-Based ToD Provisioning Dynamic Power Management for Sustainable Operation of Energy Harvesting Wireless Sensor Node. IEEE Trans. Emerg. Top. Comput. 2014, 2, 181–191. [Google Scholar] [CrossRef]
- Aoudia, F.A.; Gautier, M.; Berder, O. Learning to survive: Achieving energy neutrality in wireless sensor networks using reinforcement learning. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Ait Aoudia, F.; Gautier, M.; Berder, O. RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks. IEEE Trans. Green Commun. Netw. 2018, 2, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.; Haque, A.; Jaffery, Z.A. Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring. Ad Hoc Netw. 2019, 94, 101966. [Google Scholar] [CrossRef]
- Son, Y.; Kang, M.; Kim, Y.; Yoon, I.; Noh, D.K. Energy-Efficient Cluster Management Using a Mobile Charger for Solar-Powered Wireless Sensor Networks. Sensors 2020, 20, 3668. [Google Scholar] [CrossRef]
- Yu, C.M.; Tala’t, M.; Chiu, C.H.; Huang, C.Y. Joint Balanced Routing and Energy Harvesting Strategy for Maximizing Network Lifetime in WSNs. Energies 2019, 12, 2336. [Google Scholar] [CrossRef] [Green Version]
- Hieu, T.D.; Dung, L.T.; Kim, B.S. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks. Sensors 2016, 16, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, N.; Christofides, N.; Lestas, M. Combined Data Rate and Energy Management in Wireless Sensor Networks with Energy Harvesting Capability. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 6717–6722. [Google Scholar] [CrossRef]
Paper | Conspicuous Features | Field of Application |
---|---|---|
Lambrou et al. [14] | Custom sensor, data fusion, and detection algorithm design | Water contamination detection |
Ledeczi et al. [15] | Utilize FPGA, system wakeup using sensor trigger, multi-hop ad hoc network | Civil structural monitoring |
Odat et al. [16] | Lightweight machine learning algorithms on WSN | Vehicle classification and speed estimation |
Han et al. [17] | Utilize DSP, process sound and magnetic data, ad hoc network | Sound search for robots with collaboration |
Paper | Conspicuous Features | Field of Application |
---|---|---|
Liu et al. [21] Yang et al. [22] | Portable deployment, historical data free operation, MCU + FPGA, vibration harvesting | Fatigue crack detection on bridge |
Nikhil et al. [23] | Utilize DSP, eliminate bulky equipments | Gesture recognition |
Özdemir and Barshan [24] | Machine learning supported fall detection with high accuracy | Living healthcare |
Hussain et al. [25] | Parallel processing by FPGA, hardware software co-design, reconfigurability, low power, energy efficacy | Real-time interferometry system |
Paper | Problem | Solution |
---|---|---|
Mhatre et al. [27] | Relay node deployment with litetime constraints | Do clustering with cluster heads (CH), optimal number of CHs |
Xu et al. [28] | Balance network lifetime and connectivity | Hybrid and lifetime-oriented deployments |
Ayinde and Barnawi [29] | Communication gap at the onset of deployment | Enhanced Lifetime Deployment with Cost Constraints based on DE |
Kuawattanaphan et al. [30] | Network degeneration by environmental obstacles | DeVForce-AP with parameter free configuration |
Suganthi and Sundaram [32] | Network with node faults | Relay node placement and scheduling by local search |
Li et al. [35] Siva Ranjani et al. [36] Poekaew and Champrasert [37] Li et al. [38] | Data redundancy which increases data transmission and leads to high power consumption | Data aggregation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, P.D.; Kim, L.-w. Sensor System: A Survey of Sensor Type, Ad Hoc Network Topology and Energy Harvesting Techniques. Electronics 2021, 10, 219. https://doi.org/10.3390/electronics10020219
Nguyen PD, Kim L-w. Sensor System: A Survey of Sensor Type, Ad Hoc Network Topology and Energy Harvesting Techniques. Electronics. 2021; 10(2):219. https://doi.org/10.3390/electronics10020219
Chicago/Turabian StyleNguyen, Phuoc Duc, and Lok-won Kim. 2021. "Sensor System: A Survey of Sensor Type, Ad Hoc Network Topology and Energy Harvesting Techniques" Electronics 10, no. 2: 219. https://doi.org/10.3390/electronics10020219