Predicting Fundraising Performance in Medical Crowdfunding Campaigns Using Machine Learning
Abstract
:1. Introduction
2. Literature Review
2.1. Donation-Based Crowdfunding
2.2. Medical Crowdfunding
2.3. Research on Crowdfunding Prediction with Machine Learning
3. Methodology
3.1. Data Collection
3.2. Data Preprocessing Analysis
3.3. Models
4. Experiments
4.1. Parameters
4.2. Experimental Analysis
5. Conclusions and Future Work
5.1. Discussion Findings
5.2. Limitations and Further Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perc, M.; Gorišek Miksić, N.; Slavinec, M.; Stožer, A. Forecasting Covid-19. Front. Phys. 2020, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Hâncean, M.G.; Perc, M.; Lerner, J. Early spread of COVID-19 in Romania: Imported cases from Italy and human-to-human transmission networks. R. Soc. Open Sci. 2020, 7, 200780. [Google Scholar] [CrossRef] [PubMed]
- Momtazmanesh, S.; Ochs, H.D.; Uddin, L.Q.; Perc, M.; Routes, J.M.; Vieira, D.N.; Al-Herz, W.; Baris, S.; Prando, C.; Rosivall, L.; et al. All together to Fight COVID-19. Am. J. Trop. Med. Hyg. 2020, 102, 1181–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansourabadi, A.H.; Sadeghalvad, M.; Mohammadi-Motlagh, H.R.; Rezaei, N. The immune system as a target for therapy of SARS-CoV-2: A systematic review of the current immunotherapies for COVID-19. Life Sci. 2020, 258, 118185. [Google Scholar] [CrossRef]
- Mohamed, K.; Rodríguez-Román, E.; Rahmani, F.; Zhang, H.; Ivanovska, M.; Makka, S.A.; Joya, M.; Makuku, R.; Islam, M.S.; Radwan, N.; et al. Borderless collaboration is needed for COVID-19—A disease that knows no borders. Infect. Control Hosp. Epidemiol. 2020, 41, 1245–1246. [Google Scholar] [CrossRef] [Green Version]
- Jin, P. Medical crowdfunding in China: Empirics and ethics. J. Med. Ethics 2019, 45, 538–544. [Google Scholar] [CrossRef]
- Renwick, M.J.; Mossialos, E. Crowdfunding our health: Economic risks and benefits. Soc. Sci. Med. 2017, 191, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J. Crowdfunding for medical care: Ethical issues in an emerging health care funding practice. Hastings Cent. Rep. 2016, 46, 36–42. [Google Scholar] [CrossRef]
- Burtch, G.; Chan, J. Investigating the relationship between medical crowdfunding and personal bankruptcy in the United States: Evidence of a digital divide. MIS Q. 2018, 237–262. [Google Scholar] [CrossRef]
- Snyder, J.; Mathers, A.; Crooks, V.A. Fund my treatment!: A call for ethics-focused social science research into the use of crowdfunding for medical care. Soc. Sci. Med. 2016, 169, 27–30. [Google Scholar] [CrossRef]
- Wang, T.; Jin, F.; Cheng, Y. Early Predictions for Medical Crowdfunding: A Deep Learning Approach Using Diverse Inputs. arXiv 2019, arXiv:1911.05702. [Google Scholar]
- News, T.P. Sina Set up a 100 Million Yuan Special Fund to Fight Against the Epidemic. [EB/OL]. Available online: http://news.sina.com.cn/o/2020-01-29/doc-iimxxste7506408.shtml/ (accessed on 9 November 2020).
- Hiskes. Crowdfunding for Medical Bills a Band-Aid, not a Cure-All, UW Bothell Study Finds. [EB/OL]. Available online: https://www.washington.edu/news/2017/03/13/crowdfundingformedicalbillsabandaidnotacurealluwstudyfinds/ (accessed on 9 November 2020).
- Gao, F.; Li, X.; Cheng, Y.; Hu, Y.J. Ladies First, Gentlemen Third! The Effect of Narrative Perspective on Medical Crowdfunding; HEC Paris Research Paper No. MKG-2019-1336; HEC: Paris, France, 2019. [Google Scholar]
- Berliner, L.S.; Kenworthy, N.J. Producing a worthy illness: Personal crowdfunding amidst financial crisis. Soc. Sci. Med. 2017, 187, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Young, M.J.; Scheinberg, E. The rise of crowdfunding for medical care: Promises and perils. JAMA 2017, 317, 1623–1624. [Google Scholar] [CrossRef] [PubMed]
- Valle, V.M. An assessment of Canada’s healthcare system weighing achievements and challenges. Norteamérica 2016, 11, 193–218. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Hu, Y.; Burtch, G. Embeddedness, pro-sociality, and social influence: Evidence from online crowdfunding. MIS Q. 2018. [Google Scholar] [CrossRef]
- Sulaeman, D.; Lin, M. Reducing Uncertainty in Charitable Crowdfunding. In Proceedings of the PACIS, Yokohama, Japan, 26–30 June 2018. [Google Scholar]
- Bagheri, A.; Chitsazan, H.; Ebrahimi, A. Crowdfunding motivations: A focus on donors’ perspectives. Technol. Forecast. Soc. Chang. 2019, 146, 218–232. [Google Scholar] [CrossRef]
- Ren, J.; Raghupathi, V.; Raghupathi, W. Understanding the Dimensions of Medical Crowdfunding: A Visual Analytics Approach. J. Med. Internet Res. 2020, 22, e18813. [Google Scholar] [CrossRef]
- Agrawal, A.; Catalini, C.; Goldfarb, A. Crowdfunding: Geography, social networks, and the timing of investment decisions. J. Econ. Manag. Strategy 2015, 24, 253–274. [Google Scholar] [CrossRef] [Green Version]
- Burtch, G.; Ghose, A.; Wattal, S. Cultural differences and geography as determinants of online prosocial lending. MIS Q. 2014, 38, 773–794. [Google Scholar] [CrossRef]
- Tan, X.; Lu, Y.; Tan, Y. An Examination of Social Comparison Triggered by Higher Donation Visibility over Social Media Platforms. In Proceedings of the International Conference on Information Systems (ICIS 2016), Dublin, Ireland, 11–14 December 2016. [Google Scholar]
- Vismara, S. Sustainability in equity crowdfunding. Technol. Forecast. Soc. Chang. 2019, 141, 98–106. [Google Scholar] [CrossRef]
- Schwienbacher, A.; Larralde, B. Crowdfunding of small entrepreneurial ventures. In Handbook of Entrepreneurial Finance; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Belleflamme, P.; Lambert, T.; Schwienbacher, A. Crowdfunding: Tapping the right crowd. J. Bus. Ventur. 2014, 29, 585–609. [Google Scholar] [CrossRef] [Green Version]
- Aitamurto, T. The impact of crowdfunding on journalism: Case study of Spot. Us, a platform for community-funded reporting. J. Pract. 2011, 5, 429–445. [Google Scholar] [CrossRef]
- Lehner, O.M. A Literature Review and Research Agenda for Crowdfunding of Social Ventures, article presented first at the 2012 Research Colloquium on Social Entrepreneurship 16th–19th July; University of Oxford, Skoll Center of SAID Business School UK: Oxford, UK, 2012. [Google Scholar]
- Davidson, R.; Poor, N. The barriers facing artists’ use of crowdfunding platforms: Personality, emotional labor, and going to the well one too many times. New Media Soc. 2015, 17, 289–307. [Google Scholar] [CrossRef]
- Allison, T.H.; Davis, B.C.; Short, J.C.; Webb, J.W. Crowdfunding in a prosocial microlending environment: Examining the role of intrinsic versus extrinsic cues. Entrep. Theory Pract. 2015, 39, 53–73. [Google Scholar] [CrossRef]
- Bretschneider, U.; Leimeister, J.M. Not just an ego-trip: Exploring backers’ motivation for funding in incentive-based crowdfunding. J. Strateg. Inf. Syst. 2017, 26, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, L. What makes charitable crowdfunding projects successful: A research based on data mining and social capital theory. In Parallel and Distributed Computing, Applications and Technologies, Proceedings of the International Conference on Parallel and Distributed Computing: Applications and Technologies, Jeju Island, Korea, 20–22 August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 250–260. [Google Scholar]
- Anik, L.; Norton, M. On being the “tipping point”: Threshold incentives motivate behavior. J. Assoc. Consum. Res. 2015, 1, 1. [Google Scholar]
- Parker, G.G.; Van Alstyne, M.W. Two-sided network effects: A theory of information product design. Manag. Sci. 2005, 51, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
- Mollick, E. The dynamics of crowdfunding: An exploratory study. J. Bus. Ventur. 2014, 29, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Davies, R. Three provocations for civic crowdfunding. Inf. Commun. Soc. 2015, 18, 342–355. [Google Scholar] [CrossRef]
- Otero, P. Crowdfunding. A new option for funding health projects. Arch. Argent Pediatr. 2015, 113, 154–157. [Google Scholar]
- Lee, C.H.; Zhao, J.L.; Hassna, G. Government-incentivized crowdfunding for one-belt, one-road enterprises: Design and research issues. Financ. Innov. 2016, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Cameron, P.; Corne, D.W.; Mason, C.E.; Rosenfeld, J. Crowdfunding genomics and bioinformatics. Genome Biol. 2013, 14, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustke, C. Managing Health Costs with Crowdfunding. New York Times, 30 January 2015; p. 1. [Google Scholar]
- Bourque, A. Is Crowdfunding Your Medical Expenses Risky or Reasonable. Huffington Post, 17 April 2015; p. 1. [Google Scholar]
- Barclay, E. The Sick Turn to Crowd Funding to Pay Medical Bills. National Public Radio Shots Blog, 24 October 2012; p. 1. [Google Scholar]
- Sisler, J. Crowdfunding for medical expenses. CMAJ JAMC 2012, 184, 123–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragojlovic, N.; Lynd, L.D. Crowdfunding drug development: The state of play in oncology and rare diseases. Drug Discov. Today 2014, 19, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, O.; Assenova, V.; Li, G.C.; Boada, J.; Fleming, L. Expand innovation finance via crowdfunding. Science 2016, 354, 1526–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meer, J. Effects of the price of charitable giving: Evidence from an online crowdfunding platform. J. Econ. Behav. Organ. 2014, 103, 113–124. [Google Scholar] [CrossRef]
- Sevim, C.; Oztekin, A.; Bali, O.; Gumus, S.; Guresen, E. Developing an early warning system to predict currency crises. Eur. J. Oper. Res. 2014, 237, 1095–1104. [Google Scholar] [CrossRef]
- Barboza, F.; Kimura, H.; Altman, E. Machine learning models and bankruptcy prediction. Expert Syst. Appl. 2017, 83, 405–417. [Google Scholar] [CrossRef]
- Yeh, J.Y.; Chen, C.H. A machine learning approach to predict the success of crowdfunding fintech project. J. Enterp. Inf. Manag. 2020. [Google Scholar] [CrossRef]
- Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 2015, 521, 452–459. [Google Scholar] [CrossRef]
- Mitra, T.; Gilbert, E. The language that gets people to give: Phrases that predict success on kickstarter. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, Baltimore, MD, USA, 15–19 February 2014; pp. 49–61. [Google Scholar]
- Li, Y.; Rakesh, V.; Reddy, C.K. Project success prediction in crowdfunding environments. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, Francisco, CA, USA, 22–25 February 2016; pp. 247–256. [Google Scholar]
- Greenberg, M.D.; Pardo, B.; Hariharan, K.; Gerber, E. Crowdfunding support tools: Predicting success & failure. In CHI’13 Extended Abstracts on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2013; pp. 1815–1820. [Google Scholar]
- Etter, V.; Grossglauser, M.; Thiran, P. Launch hard or go home! Predicting the success of Kickstarter campaigns. In CHI’13: Conference on Online Social Networks; Association for Computing Machinery: New York, NY, USA, 2013; pp. 177–182. [Google Scholar]
- Lu, C.T.; Xie, S.; Kong, X.; Yu, P.S. Inferring the impacts of social media on crowdfunding. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, NY, USA, 24–28 February 2014; pp. 573–582. [Google Scholar]
- Wang, W.; Zheng, H.; Wu, Y.J. Prediction of fundraising outcomes for crowdfunding projects based on deep learning: A multimodel comparative study. Soft Comput. 2020, 24, 8323–8341. [Google Scholar] [CrossRef]
- Lai, C.Y.; Lo, P.C.; Hwang, S.Y. Incorporating comment text into success prediction of crowdfunding campaigns. In Proceedings of the Pacific Asia Conference on Information Systems (PACIS), Association For Information Systems, Langkawi, Malaysia, 16–20 July 2017. [Google Scholar]
- Kamath, R.; Kamat, R. Supervised learning model for kickstarter campaigns with R mining. Int. J. Inf. Technol. Model. Comput. IJITMC 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Tan, F.; Hou, X.; Wei, Z. Success Prediction on Crowdfunding with Multimodal Deep Learning. IJCAI 2019, 2158–2164. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Lau, R.Y.; Xu, W. The determinants of crowdfunding success: A semantic text analytics approach. Decis. Support Syst. 2016, 91, 67–76. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Ma, Y.; Zheng, X.; Guo, L. Self-adaptive resource allocation for cloud-based software services based on iterative QoS prediction model. Future Gener. Comput. Syst. 2020, 105, 287–296. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Salzberg, S.L. C4. 5: Programs for Machine Learning by j. Ross Quinlan; Morgan Kaufmann Publishers, Inc.: Burlington, MA, USA, 1994. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 66, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- To, S.H. Correlation Coefficient: Simple Definition, Formula, Easy Steps. [EB/OL]. Available online: https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/ (accessed on 9 November 2020).
- Kim, S.E.; Lee, K.Y.; Shin, S.I.; Yang, S.B. Effects of tourism information quality in social media on destination image formation: The case of Sina Weibo. Inf. Manag. 2017, 54, 687–702. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, S.; Yu, X.; Xu, H. Chinese public’s attention to the COVID-19 epidemic on social media: Observational descriptive study. J. Med. Internet Res. 2020, 22, e18825. [Google Scholar] [CrossRef]
Feature | Description |
---|---|
TypeRaiser | Type of raisers (personal = 0, organization = 1) |
Target | The dollar amount that is sought through the campaign (CNY¥) |
NumRetweet | Number of people who shared the campaign link |
Duration | Time period for which the campaign has been active (days) |
NumDonator | Number of people who donated to a campaign |
NumUpdate | Number of updates between the launched time and the ended time |
NumWord | The number of words contained in project description. |
Fundraising | The total amount of raised fund |
Factors | Related References |
---|---|
Target | Sudhir et al. (2016), Ryzhov et al. (2016), Gleasure and Feller (2016), Qian and Lin (2017), Sulaeman and Lin (2018), Chen et al. (2020) |
Type of Raisers | Burnett (2002), Sargeant (1999), Baron (1997), Kogut and Ritov (2007), Ein-Gar and Levontin (2013) |
Duration | Mollick (2014), Cumming et al. (2015), Cordova et al. (2015), Liu and Liu, 2016, Lukkarinen et al. (2016) |
Number of Retweets | Kromidha and Robson (2016), De Vries et al. (2012), Liu et al. (2017) |
Number of Words | Qian and Lin (2017), Sulaeman and Lin (2018), Zhou et al. (2018) |
Number of Donors | Kromidha and Robson (2016), Sudhir et al. (2016), Giudici et al. (2018), Gleasure and Morgan(2018) |
Number of Updates | Zheng et al. (2014), Xu et al. (2014), Beaulieu et al. (2015), Kraus et al. (2016), Kuppuswamy and Bayus (2017), Block et al. (2018), Gleasure and Morgan (2018), De Larrea et al. (2019), Wang and Wang (2019) |
Min | Median | Mean | Max | Std.Dev. | |
---|---|---|---|---|---|
Target | 100 | 50,000 | 52,830.43 | 1,000,000 | 57,881.63 |
NumRetweet | 0 | 34 | 123.70 | 999 | 229.29 |
Duration | 0 | 60 | 56.04 | 180 | 14.76 |
NumDonator | 0 | 82 | 227.82 | 14,315 | 637.63 |
NumUpdate | 0 | 4 | 5.47 | 42 | 4.67 |
NumWord | 66 | 1103 | 1096.78 | 2713 | 409.41 |
Fundraising | 0 | 136,900 | 605,883.25 | 7,259,000 | 1,111,957.73 |
Target | Raisers | NumRetweet | Duration | NumDonator | NumUpdate | NumWord | Fundraising | |
---|---|---|---|---|---|---|---|---|
Target | 1 | 0.073 | −0.017 | 0.177 | 0.026 | 0.108 | 0.105 | 0.048 |
Raisers | 0.073 | 1 | −0.186 | 0.038 | −0.046 | 0.107 | 0.047 | −0.154 |
NumRetweet | −0.017 | −0.186 | 1 | −0.103 | 0.200 * | 0.044 | −0.132 | 0.365 ** |
Duration | 0.177 | 0.038 | −0.103 | 1 | −0.025 | 0.016 | 0.107 | −0.109 |
NumDonator | 0.026 | −0.046 | 0.200 * | −0.025 | 1 | 0.053 | 0.037 | 0.455 *** |
NumUpdate | 0.108 | 0.107 | 0.044 | 0.016 | 0.053 | 1 | 0.019 | 0.109 |
NumWord | 0.105 | 0.047 | −0.132 | 0.107 | 0.037 | 0.019 | 1 | −0.024 |
Fundraising | 0.048 | −0.154 | 0.365 ** | −0.109 | 0.455 *** | 0.109 | −0.024 | 1 |
Task 1 | Task 2 | |||||
---|---|---|---|---|---|---|
MAE | MSE | R-Squared | MAE | MSE | R-Squared | |
KNN | 0.06044 | 0.01352 | 0.38398 | 0.08148 | 0.01438 | 0.74662 |
LR | 0.07270 | 0.01566 | 0.28610 | 0.08071 | 0.01132 | 0.80050 |
ANN | 0.04976 | 0.01057 | 0.51823 | 0.07230 | 0.01018 | 0.82069 |
CART | 0.05147 | 0.01057 | 0.51823 | 0.06915 | 0.00978 | 0.82768 |
Xgboost | 0.05140 | 0.01035 | 0.52832 | 0.07109 | 0.00962 | 0.83057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, N.; Zhou, X.; Niu, B.; Feng, Y. Predicting Fundraising Performance in Medical Crowdfunding Campaigns Using Machine Learning. Electronics 2021, 10, 143. https://doi.org/10.3390/electronics10020143
Peng N, Zhou X, Niu B, Feng Y. Predicting Fundraising Performance in Medical Crowdfunding Campaigns Using Machine Learning. Electronics. 2021; 10(2):143. https://doi.org/10.3390/electronics10020143
Chicago/Turabian StylePeng, Nianjiao, Xinlei Zhou, Ben Niu, and Yuanyue Feng. 2021. "Predicting Fundraising Performance in Medical Crowdfunding Campaigns Using Machine Learning" Electronics 10, no. 2: 143. https://doi.org/10.3390/electronics10020143
APA StylePeng, N., Zhou, X., Niu, B., & Feng, Y. (2021). Predicting Fundraising Performance in Medical Crowdfunding Campaigns Using Machine Learning. Electronics, 10(2), 143. https://doi.org/10.3390/electronics10020143