Impact of Revised Time of Use Tariff on Variable Renewable Energy Curtailment on Jeju Island
Abstract
:1. Introduction
2. Variable Renewable Energy Curtailment and Time-of-Use Tariff in Jeju
2.1. Power System and VRE Curtailment Cases of Jeju Island
2.2. Revised ToU Tariff Rates to Reduce VRE Curtailment on the Demand Side
3. Systematic Procedure for Analyzing the Impacts of the Revised ToU Tariff on VRE Curtailment
3.1. Estimation of VRE Curtailment of Islanded Power Systems
3.2. Analyzing Net Load Profile for Applying Revised ToU Tariff
3.3. Price Elasticity of Electricity Demand for Revised ToU Tariff
4. Case Study
4.1. Jeju Power System from 2022 to 2030
4.2. Estimation of VRE Curtailment in Jeju from 2022 to 2030
4.3. Mitigation of VRE Curtailment by the Revised ToU Tariff
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Jeju Special Self-Governing Province. Carbon Free Island Jeju by 2030. Available online: http://www.ksga.org/down/down.asp?file=Carbon%20Free%20Island%20Jeju%20by%202030.pdf (accessed on 28 October 2020).
- The Centre of Excellence (COE) for the Sustainable Development of Small Island Developing States. The Path to a Carbon-Free Island, Jeju—Republic of Korea, 2019. Available online: http://www.sustainablesids.org/wp-content/uploads/2019/01/COE-Case-Study-in-Sustainable-Energy-The-Path-to-a-Carbon-free-Island-Jeju-Republic-of-Korea-2019.pdf (accessed on 28 October 2020).
- Korea Energy Economics Institute (KEEI). Modified CFI 2030 Plan to Implement Energy Self-Reliance Island; KEEI: Ulsan, Korea, 2019. [Google Scholar]
- Nguyen, N.; Mitra, J. Reliability of Power System with High Wind Penetration Under Frequency Stability Constraint. IEEE Trans.Power Syst. 2018, 33, 985–994. [Google Scholar] [CrossRef]
- Baharvandi, A.; Aghaei, J.; Niknam, T.; Shafie-Khah, M.; Godina, R.; Nojavan, S. Bundled Generation and Transmission Planning Under Demand and Wind Generation Uncertainty Based on a Combination of Robust and Stochastic Optimization. IEEE Trans. Sustain. Energy 2018, 9, 1477–1486. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Brecha, R.J.; Luderer, G. Analyzing major challenges of wind and solar variability in power systems. Renew. Energy 2015, 81, 1–10. [Google Scholar] [CrossRef]
- Bird, L.; Milligan, M.; Lew, D. Integrating Variable Renewable Energy: Challenges and Solutions; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013.
- Sigrist, L.; Lobato, E.; Echavarren, F.M.; Egido, I.; Rouco, L. Island Power Systems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–26. [Google Scholar]
- Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E.M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; et al. Wind and Solar Curtailment. In Proceedings of the International Workshop on Large-Scale Integration of Wind Power into Power Systems, London, UK, 22–24 October 2013. [Google Scholar]
- Bunodiere, A.; Lee, H.S. Renewable Energy Curtailment: Prediction Using a Logic-Based Forecasting Method and Mitigation Measures in Kyushu, Japan. Energies 2020, 13, 4703. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Wi, Y.-M.; Joo, S.-K. Stochastic Wind Curtailment Scheduling for Mitigation of Short-Term Variations in a Power System with High Wind Power and Electric Vehicle. Appl. Sci. 2018, 8, 1684. [Google Scholar] [CrossRef] [Green Version]
- Sabera, H.; Moeini-Aghtaie, M.; Ehsan, M.; Fotuhi-Firuzabada, M. A scenario-based planning framework for energy storage systems with the main goal of mitigating wind curtailment issue. Int. J. Electr. Power Energy Syst. 2019, 104, 414–422. [Google Scholar] [CrossRef]
- Han, Y.R. State of Duck Curve in California, USA and Response Policy. Electr. World Mon. Mag. 2018, 493, 35–41. [Google Scholar]
- Brenna, M.; Foiadelli, F.; Longo, M.; Zaninelli, D. Improvement of Wind Energy Production through HVDC Systems. Energies 2017, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O’Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; et al. Flexibility in 21st Century Power Systems; National Renewable Energy Lab.: Golden, CO, USA, 2014.
- Ahn, S.Y.; Jin, S.J.; Yoo, S.H. Estimation of the electricity demand function using a lagged dependent variable model. J. Energy Eng. 2016, 25, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Yu, J.; Fan, S.; Bi, K.; An, Q. PEV Charging Coordination Using Adaptive Time-of-use Tariffs to Reduce Wind Energy Curtailment. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Bangkok, Thailand, 6–9 June 2018. [Google Scholar]
- Jeon, W.; Cho, S.; Lee, S. Estimating the Impact of Electric Vehicle Demand Response Programs in a Grid with Varying Levels of Renewable Energy Sources: Time-of-Use Tariff versus Smart Charging. Energies 2020, 13, 4365. [Google Scholar] [CrossRef]
- Ministry of Trade, Industry and Energy (MOTIE). The 8th Basic Plan for Long-Term Electricity Supply and Demand (2017~2031); MOTIE: Sejong, Korea, 2017.
- Ministry of Trade, Industry and Energy (MOTIE). The 3rd Basic Plan for Long-Term Energy Supply and Demand (2020~2040); MOTIE: Sejong, Korea, 2019.
- Myung, H.S.; Kim, H.C.; Kang, N.H.; Kim, Y.H.; Kim, S.H. Analysis of the Load Contribution of Wind Power and Photovoltaic Power to Power System in Jeju. J. Korean Solar Energy Soc. 2018, 38, 13–24. [Google Scholar]
- Kim, S.; Lee, H.; Kim, H.; Jang, D.H.; Kim, H.J.; Hur, J.; Cho, Y.S.; Hur, K. Improvement in policy and proactive interconnection procedure for renewable energy expansion in South Korea. Renew. Sustain. Energy Rev. 2018, 98, 150–162. [Google Scholar] [CrossRef]
- Korea Electric Power Corporation. Statistics of Electric Power in Korea, June 2018. Available online: https://home.kepco.co.kr/kepco/cmmn/fms/FileDownSecure.do?atchFileId=ebc971a9521982009dab568591f3135dcd127129c9ad22a4aed6e67d7c1a57dfd4&fileSn=96d2f7b28d01c0ba8073192bc050ecd7e7 (accessed on 28 October 2020).
- Korea Electric Power Corporation. Electric Rates Table in South Korea, July 2019. Available online: http://cyber.kepco.co.kr/ckepco/front/jsp/CY/E/E/CYEEHP00201.jsp (accessed on 28 October 2020).
- Holttinen, H.; Kiviluoma, J.; Estanquerio, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y.H.; et al. Variability of load and net load in case of large-scale distributed wind power. In Proceedings of the 10th International Workshop on Large-Scale Integration of Wind Power into Power Systems as Well as on Transmission Networks for Offshore Wind farms, Aarhus, Denmark, 25–26 October 2011. [Google Scholar]
- Zhang, L.; Shi, J.; Wang, L.; Xu, C. Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System. Entropy 2020, 22, 1355. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qian, Z.; He, T. Short-Term Load Forecasting with Improved CEEMDAN and GWO-Based Multiple Kernel ELM. Complexity 2020, 2020, 1–20. [Google Scholar] [CrossRef]
- Kirschen, D.S.; Strbac, G. Fundamentals of Power System Economics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Jang, G.; Oh, S.; Han, B.M.; Kim, C.K. Novel reactive power compensation scheme for the Jeju-Haenam HVDC system. IEE Proc. Gener. Transm. Ditrib. 2005, 152, 514–520. [Google Scholar] [CrossRef]
- Market, P.E.; Skliutas, J.P.; Sung, P.Y.; Kim, K.S.; Kim, H.M.; Sailer, L.H.; Young, R.R. New synchronous condensers for Jeju island. In Proceedings of the 2012 IEEE Power & Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Korea Institute of Energy Technology Evaluation and Planning (KETEP). Green Energy New Deal Briefs, September 2020. Available online: http://energytransitionkorea.org/sites/default/files/2020-09/%EA%B7%B8%EB%A6%B0%EC%97%90%EB%84%88%EC%A7%80%EB%89%B4%EB%94%9C%20%EB%B8%8C%EB%A6%AC%ED%94%84%209%EC%9B%94%ED%98%B8.pdf (accessed on 28 October 2020).
- Jeju Special Self-Governing Province. 6th Local Energy Plan for the CFI, January 2020. Available online: http://www.prism.go.kr/homepage/researchCommon/downloadResearchAttachFile.do;jsessionid=F5062C5E781CAB59E07A9A515CE89D8A.node02?work_key=001&file_type=CPR&seq_no=001&pdf_conv_yn=Y&research_id=6500000-202000092 (accessed on 28 October 2020).
- Kim, Y.H.; Kim, S.H. Increasing Effect Analysis of the Wind Power Limit Using Energy Storage System in Jeju-Korea. J. Korean Solar Energy Soc. 2014, 34, 81–90. [Google Scholar] [CrossRef] [Green Version]
Year | Generation Capacity [MW] | Power Generation [GWh] | ||||
---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2015 | 2016 | 2017 | |
Grid Interconnection | 400.0 (31.1%) | 400.0 (26.9%) | 400.0 (26.5%) | 1742.2 (36.4%) | 2002.5 (39.1%) | 2297.3 (42.4%) |
Controllable Generators (LNG, Oil, etc.) | 590.0 (45.8%) | 706.0 (47.5%) | 706.0 (46.7%) | 2602.1 (54.3%) | 2535.5 (49.4%) | 2410.3 (44.5%) |
VRE (PV) | 71.7 (5.6%) | 88.2 (5.9%) | 125.0 (8.3%) | 88.3 (1.8%) | 116.3 (2.3%) | 141.0 (2.6%) |
VRE (Wind) | 215.0 (16.7%) | 271.0 (18.2%) | 273.0 (18.1%) | 334.9 (7.0%) | 441.5 (8.6%) | 535.0 (9.9%) |
Noncontrollable Generators | 10.3 (0.8%) | 20.8 (1.4%) | 7.0 (0.5%) | 24.0 (0.5%) | 31.7 (0.6%) | 38.4 (0.7%) |
Total | 1287.0 (100%) | 1486.0 (100%) | 1511.0 (100%) | 4791.5 (100%) | 5127.5 (100%) | 5422.0 (100%) |
Number of Instances of Wind-Energy Curtailment | 2015 | 2016 | 2017 | |||
---|---|---|---|---|---|---|
Day | Night | Day | Night | Day | Night | |
Spring | 0 | 0 | 1 | 1 | 2 | 2 |
Summer | 0 | 1 | 0 | 0 | 0 | 0 |
Autumn | 0 | 2 | 0 | 4 | 6 | 6 |
Winter | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 0 | 3 | 1 | 5 | 8 | 8 |
Amount of wind-energy curtailment [MWh] | Day: 0 | Night: 152 | Day: 2 | Night: 250 | Day: 710 | Night: 591 |
Total: 152 | Total: 252 | Total: 1301 | ||||
Total generation of wind energy [MWh] | 352,183 | 470,576 | 542,526 | |||
Rate of curtailment [%] | 0.04 | 0.05 | 0.23 |
Type | Tariff Rates | Electricity Used [kWh (%)] | Average Revenues [Won/kWh] |
---|---|---|---|
Residential | 3-Stage Progressive Tariff | 810,678,777 (16.2%) | 108.50 |
General | Time-of-Use (ToU) Tariff | 1,913,259,060 (38.2%) | 130.42 |
Educational | 130,395,448 (2.6%) | 103.07 | |
Industrial | 593,234,772 (11.8%) | 107.41 | |
Agricultural | Flat Tariff | 1,390,704,857 (27.7%) | 47.57 |
Public Lighting | A (fixed), B (metric) | 52,182,047 (1.0%) | 113.48 |
Midnight | A (heat), B (air-conditioning) | 123,089,730 (2.5%) | 67.48 |
Seasons | Type | Time |
---|---|---|
Spring (March, April, May) and Autumn (September, October, November) | Off-Peak | 00:00~09:00 am/23:00~24:00 pm |
Medium | 09:00~10:00 am/12:00~13:00 pm/17:00~23:00 pm | |
Peak | 10:00~12:00 am/13:00~17:00 pm | |
Summer (June, July, August) | Off-Peak | 00:00~09:00 am/23:00~24:00 pm |
Medium | 09:00~10:00 am/12:00~13:00 pm/17:00~23:00 pm | |
Peak | 10:00~12:00 am/13:00~17:00 pm | |
Winter (December, January, February) | Off-Peak | 00:00~09:00 am/23:00~24:00 pm |
Medium | 09:00~10:00 am/12:00~17:00 pm/20:00~22:00 pm | |
Peak | 10:00~12:00 am/17:00~20:00 pm/22:00~23:00 pm |
Number of VRE Curtailment Days | Total VRE Curtailment [MWh] | |||||
---|---|---|---|---|---|---|
Year | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 |
Actual VRE curtailment [days] | 16 | 16 | 46 | 1301 | 1366 | 9223 |
Estimated VRE curtailment [MWh] | 16 | 16 | 46 | 1297.16 | 1358.92 | 9216.42 |
Error [%] | 0 | 0 | 0 | 0.295 | 0.518 | 0.713 |
Year | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 |
---|---|---|---|---|---|---|---|---|---|
Max. Demand [MW] | 1111 | 1138 | 1161 | 1182 | 1204 | 1227 | 1252 | 1282 | 1321 |
Total Generation [GWh] | 6212 | 6454 | 6696 | 6935 | 7171 | 7403 | 7631 | 7853 | 8068 |
VRE (Wind) [MW] | 975 | 1015 | 1075 | 1265 | 1365 | 1565 | 1815 | 2085 | 2345 |
VRE (PV) [MW] | 659.9 | 780.3 | 911.7 | 1034 | 1121 | 1202 | 1270 | 1337 | 1411 |
Total RE Capacity [MW] | 1635 | 1795 | 1987 | 2299 | 2486 | 2767 | 3085 | 3422 | 3756 |
Generators | Min. | Max. |
---|---|---|
South Jeju #1, #2 | 55 | 103 |
Jeju Thermal #2, #3 | 46 | 79 |
Jeju CC #1, #2 (2019~) | 67 | 102 |
Hanlim CC (Hanlim GT) | 43 (28) | 104 (74) |
Jeju Internal Combustion Engine #1, #2 | 28 | 40 |
South Jeju CC | 90 | 125 |
Jeju GT #3 | 16 | 49 |
Year | Total generation [GWh] | VRE Generation | VRE Curtailment | ||||
---|---|---|---|---|---|---|---|
Wind [GWh] | PV [GWh] | Total [GWh] | Curtailment [MWh] | Time [Hour] | Rate of Curtailment [%] | ||
2022 | 6212 | 1941.13 | 627.57 | 2568.70 | 1820.73 | 30 | 0.07 |
2023 | 6454 | 2020.76 | 742.08 | 2762.84 | 5079.92 | 63 | 0.18 |
2024 | 6696 | 2140.21 | 867.04 | 3007.25 | 12,532.10 | 109 | 0.42 |
2025 | 6935 | 2518.49 | 983.35 | 3501.83 | 41,043.24 | 246 | 1.17 |
2026 | 7171 | 2717.58 | 1066.09 | 3783.66 | 63,971.86 | 337 | 1.69 |
2027 | 7403 | 3115.75 | 1143.12 | 4258.87 | 126,844.75 | 597 | 2.98 |
2028 | 7631 | 3613.48 | 1207.79 | 4821.27 | 249,186.03 | 945 | 5.17 |
2029 | 7853 | 4151.02 | 1271.51 | 5422.53 | 432,456.04 | 1301 | 7.98 |
2030 | 8068 | 4668.65 | 1341.88 | 6010.54 | 646,447.13 | 1609 | 10.76 |
Season | of Period 1 (On-Peak) | of Period 2 (Medium) | of Period 3 (Off-Peak) |
---|---|---|---|
Spring and Autumn | = 20 | = 7 | = 0 |
Summer | = 0 | = 0 | = 0 |
Winter | = 0 | = 3 | = 0 |
Average (Max.~Min.) [Won/kWh] | Current ToU Tariff Rates | Revised ToU Tariff Rates | ||||
---|---|---|---|---|---|---|
Spring and Autumn | Summer | Winter | Spring and Autumn | Summer | Winter | |
Peak | 91.9 (68.1~114.8) | 157.7 (114.2~196.6) | 137.3 (106.7~172.2) | Scenarios | 157.7 (114.2~196.6) | 137.3 (106.7~172.2) |
Medium | 70.2 (58.0~84.1) | 101.0 (80.4~114.5) | 98.0 (78.0~114.7) | 70.2 (58.0~84.1) | 101.0 (80.4~114.5) | 98.0 (78.0~114.7) |
Off-Peak | 55.4 (43.8~62.7) | 55.4 (43.8~62.7) | 62.3 (47.6~71.4) | 55.4 (43.8~62.7) | 55.4 (43.8~62.7) | 62.3 (47.6~71.4) |
Season and Period (The Highest Number of VRE Curtailment) [Time Interval] | Period (Demand Changed) [Time Interval] | Price Elasticities | Scenarios | ||||
---|---|---|---|---|---|---|---|
Price | Demand | ||||||
Period A | |||||||
Spring and Autumn | [10~12] | [10~12] | −0.21 | - | 5% Down | UP | Down |
[07~09] | - | +0.21 | 10% Down | UP | Down | ||
[13~17] | [13~17] | −0.21 | - | 20% Down | UP | Down | |
[18~22] | - | +0.21 | 30% Down | UP | Down |
Scenarios | VRE Generation [GWh] | VRE Curtailment | Rate of Mitigation [%] | ||
---|---|---|---|---|---|
Curtailment [MWh] | Time [Hour] | Rate of Curtailment [%] | |||
No Mitigation | 2568.70 | 1820.73 | 30 | 0.071 | 0 |
5% Down | 2568.70 | 1736.67 | 30 | 0.068 | 4.62 |
10% Down | 2568.70 | 1653.97 | 29 | 0.064 | 9.16 |
20% Down | 2568.70 | 1497.07 | 28 | 0.058 | 17.78 |
30% Down | 2568.70 | 1345.12 | 28 | 0.052 | 26.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, J.; Wi, Y.-M. Impact of Revised Time of Use Tariff on Variable Renewable Energy Curtailment on Jeju Island. Electronics 2021, 10, 135. https://doi.org/10.3390/electronics10020135
Lee J, Lee J, Wi Y-M. Impact of Revised Time of Use Tariff on Variable Renewable Energy Curtailment on Jeju Island. Electronics. 2021; 10(2):135. https://doi.org/10.3390/electronics10020135
Chicago/Turabian StyleLee, Jinyeong, Jaehee Lee, and Young-Min Wi. 2021. "Impact of Revised Time of Use Tariff on Variable Renewable Energy Curtailment on Jeju Island" Electronics 10, no. 2: 135. https://doi.org/10.3390/electronics10020135