Vision-Based Target Detection and Tracking for a Miniature Pan-Tilt Inertially Stabilized Platform
Abstract
:1. Introduction
2. Mathematical Model
2.1. Coordinate Systems
2.2. Stabilization Principle
2.3. Dynamic Model of the Gimbal
2.4. Camera Motion and Interaction Matrix
3. Control Design
3.1. Control System Structure
3.2. Inertial Rate Stabilization Controller
3.3. Visual Tracking Controller
4. Numerical Simulations
5. Experimental Results
5.1. Target Detection
5.2. Target Tracking Experiments
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quan, Q. Introduction to Muticopter Design and Control; Springer Nature: Singapore, 2017; pp. 3–5. [Google Scholar]
- Madison, R.; Andrews, G.; DeBitetto, P.; Rasmussen, S.; Bottkol, M. Vision-aided navigation for small UAVs in GPS-challenged environments. In Proceedings of the AIAA Infotech@Aerospace Conferene and Exhibit, Rohnert Park, CA, USA, 7–10 May 2007. [Google Scholar]
- Kendoul, F. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 2012, 29, 315–378. [Google Scholar] [CrossRef]
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilkert, J.M.; Hullender, D.A. Adaptive control system techniques applied to inertial stabilization systems. In Proceedings of the International Society for Optical Engineering, Rosemont, IL, USA, 27–28 September 1990; Volume 1304, pp. 190–206. [Google Scholar]
- Nie, J. Fuzzy control of multivariable nonlinear servomechanisms with explicit decoupling scheme. IEEE Trans. Fuzzy Syst. 1997, 5, 304–311. [Google Scholar] [CrossRef]
- Lee, T.H.; Ge, S.S.; Wong, C.P. Adaptive neural network feedback control of a passive line-of-sight stabilization system. Mechatronics 1998, 8, 887–903. [Google Scholar] [CrossRef]
- Osborne, J.; Hicks, G.; Fuentes, R. Global analysis of the double-gimbal mechanism. IEEE Contr. Syst. Mag. 2008, 28, 44–64. [Google Scholar]
- Ji, W.; Li, Q.; Zhao, D.; Fang, S. Adaptive fuzzy PID composite control with hysteresis-band switching for line of sight stabilization servo system. Aerosp. Sci. Technol. 2011, 15, 25–32. [Google Scholar] [CrossRef]
- Abdo, M.M.; Vali, A.R.; Toloei, A.R.; Arvan, M.R. Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller. ISA Trans. 2014, 53, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, H.; Shi, Q.; Wang, H.; Zhang, M.; Zhao, H. Comparision of an ANFIS and fuzzy PID control model for performance in a two-axis inertial stabilized platform. IEEE Access 2017, 5, 12951–12962. [Google Scholar] [CrossRef]
- Ambrose, H.; Qu, Z.; Johnson, R. Nonlinear robust control for a passive line-of-sight stabilization system. In Proceedings of the 2001 IEEE International Conference on Control Applications, Mexico City, Mexico, 7–10 September 2001; pp. 942–947. [Google Scholar]
- Kim, S.B.; Kim, S.H.; Kwak, Y.K. Robust control for a two-axis gimbaled sensor system with multivariable feedback systems. IET Control. Theory Appl. 2010, 4, 539–551. [Google Scholar] [CrossRef]
- Řezáč, M.; Hurák, Z. Structured MIMO H∞ design for dual-stage inertial stabilization: Case study for HIFOO and Hinfstruct solvers. Mechatronics 2013, 4, 1084–1093. [Google Scholar] [CrossRef]
- Lei, X.; Zou, Y.; Dong, F. A composite control method based on the adaptive RBFNN feedback control and the ESO for two-axis intertially stabilized platforms. ISA Trans. 2015, 59, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Safa, A.; Abdolmalaki, R.Y.; Dong, F. Robust output feedback tracking control for inertially stabilized platforms with matched and unmatched uncertainties. IEEE Trans. Contr. Syst. Technol. 2019, 27, 118–131. [Google Scholar] [CrossRef]
- Lee, D.H.; Tran, D.Q.; Kim, Y.B.; Chakir, S. A robust double active control system design for disturbance suppression of a two-axis gimbal system. Electronics 2020, 9, 1638. [Google Scholar] [CrossRef]
- Hilkert, J.M. Inertially stabilized platform technology: Concepts and principles. IEEE Contr. Syst. Mag. 2008, 28, 26–46. [Google Scholar]
- Masten, M.K. Inertially stabilized platform for optical imaging systems: Tracking dynamic targets with mobile sensors. IEEE Cont. Syst. Mag. 2008, 28, 47–64. [Google Scholar]
- Zhou, X.; Zhang, H.; Yu, R. Decoupling control for two-axis inertially stabilized platform based on an inverse system and internal model control. Mechatronics 2014, 24, 1203–1213. [Google Scholar] [CrossRef]
- Dong, F.; Lei, X.; Chou, W. A dynamic model and control method for a two-axis inertially stabilized platform. IEEE Trans. Ind. Electron. 2017, 64, 432–439. [Google Scholar] [CrossRef]
- Hurák, Z.; Řezáč, M. Combined line-of-sight inertial stabilization and visual tracking: Application to an airborne camera platform. In Proceedings of the 48th Conference of Decision and Control, Shanghai, China, 15–18 December 2009; pp. 8458–8463. [Google Scholar]
- Hurák, Z.; Řezáč, M. Image-based pointing and tracking for inertially stabilized airborne camera platform. IEEE Trans. Contr. Syst. Technol. 2012, 20, 1146–1159. [Google Scholar] [CrossRef]
- Olivares-Méndez, M.A.; Campoy, P.; Martínez, C.; Mondragón, I. A pan-tilt camera fuzzy vision controller on an unmanned aerial vehicle. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2879–2884. [Google Scholar]
- Rajesh, R.J.; Ananda, C.M. PSO tuned PID controller for controlling camera position in UAV using 2-axis gimbal. In Proceedings of the 2015 International Conference on Power and Advanced Control Engineering, Bengaluru, India, 12–14 August 2015; pp. 128–133. [Google Scholar]
- Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; John Wiley: New York, NY, USA, 2006; pp. 355–374. [Google Scholar]
- Nonami, K.; Kendoul, K.; Suzuki, S.; Wang, W.; Nakazawa, D. Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles; Springer: Tokyo, Japan, 2010; pp. 121–122. [Google Scholar]
- Liu, B.; Guo, J.; Rong, J.; Li, B. Cascaded control design for a stabilized pan-tilt camera platfrom on a quadrotor UAV. In Proceedings of the 8th Annual Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Tianjin, China, 19–23 July 2018; pp. 907–912. [Google Scholar]
- Liu, B.; Wang, C.; Li, W.; Li, Z. Robust controller design using the Nevanlinna-Pick interpolation in gyro stabilzed pod. Discret. Dyn. Nat. Soc. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Chen, G.; Chen, J.; Hua, C. Finite control for image-based visual servoing of a quadrotor using nonsingular fast terminal sliding mode. Int. J. Control Autom. Syst. 2020, 18, 2337–2348. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Yuan, C.; Zhang, X.; Chen, F. Vision-Based Target Detection and Tracking for a Miniature Pan-Tilt Inertially Stabilized Platform. Electronics 2021, 10, 2243. https://doi.org/10.3390/electronics10182243
Guo J, Yuan C, Zhang X, Chen F. Vision-Based Target Detection and Tracking for a Miniature Pan-Tilt Inertially Stabilized Platform. Electronics. 2021; 10(18):2243. https://doi.org/10.3390/electronics10182243
Chicago/Turabian StyleGuo, Jianchuan, Chenhu Yuan, Xu Zhang, and Fan Chen. 2021. "Vision-Based Target Detection and Tracking for a Miniature Pan-Tilt Inertially Stabilized Platform" Electronics 10, no. 18: 2243. https://doi.org/10.3390/electronics10182243
APA StyleGuo, J., Yuan, C., Zhang, X., & Chen, F. (2021). Vision-Based Target Detection and Tracking for a Miniature Pan-Tilt Inertially Stabilized Platform. Electronics, 10(18), 2243. https://doi.org/10.3390/electronics10182243