Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition
Abstract
:1. Introduction
2. Description of the Numerical Technique
2.1. Separation of Antenna and Radome Domains
2.2. Application of MLFMA and CBFM
2.3. Iterative Domain Decomposition Analysis
- Obtain the excitation over the antenna domain:
- Obtain the current on the antenna domain by solving iteratively (applying MLFMA):
- Obtain the field impressed on the radome domain due to as follows:
- Retrieve the current on the radome domain by solving the following:
- The total current distribution for the n-th iteration, as indicated by Equation (3) and expressed in terms of CBFs, is thus the following:
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nair, R.U.; Jha, R.M. Analysis of Airborne Radomes: Trends and Perspectives. IEEE Antennas Propag. Mag. 2014, 56, 276–298. [Google Scholar] [CrossRef]
- MacDonald, M.E. An Overview of Radomes for Large Ground-Based Antennas. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 36–43. [Google Scholar] [CrossRef]
- Cady, W.M. Radar Scanners and Radomes; Ulan Press: Oxford, UK, 2012. [Google Scholar]
- Althuwayb, A.A. Enhanced radiation gain and efficiency of a metamaterial inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems. Microw Opt Technol. Lett. 2021, 63, 1892–1898. [Google Scholar] [CrossRef]
- Elfergani, I.T.E.; Hussaini, A.S.; Rodriguez, J.; Abd-Alhameed, R. Antenna Fundamentals for Legacy Mobile Applications and Beyond; Springer: Cham, Switzerland, 2017; pp. 1–659. [Google Scholar]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E. A new planar broadband antenna based on meandered line loops for portable wireless communication devices. Radio Sci. 2016, 51, 1109–1117. [Google Scholar] [CrossRef]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R. The resonating MTM-based miniaturized antennas for wide-band RF-microwave systems. Microw. Opt. Technol. Lett. 2015, 57, 2339–2344. [Google Scholar] [CrossRef]
- Shirkolaei, M.M. High Efficiency X-Band Series-Fed Microstrip Array Antenna. Prog. Electromagn. Res. C 2020, 105, 35–45. [Google Scholar] [CrossRef]
- Alibakhshi-Kenari, M.; Virdee, B.S.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.O.; See, C.H.; Liu, B.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; et al. A Comprehensive Survey of “Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications”. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Mei, P.; Lin, X.Q.; Yu, J.W.; Zhang, P.C.; Boukarkar, A. A Low Radar Cross Section and Low Profile Antenna Co-Designed With Absorbent Frequency Selective Radome. IEEE Trans. Antennas Propag. 2018, 66, 409–413. [Google Scholar] [CrossRef]
- Nair, R.U.; Jha, R.M. Electromagnetic Performance Analysis of a Novel Monolithic Radome for Airborne Applications. IEEE Trans. Antennas Propag. 2009, 57, 3664–3668. [Google Scholar] [CrossRef]
- Kedar, A.; Revankar, U.K. Parametric Study of Flat Sandwich Multilayer Radome. Prog. Electromagn. Res. 2006, 66, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Pei, Y.; Fang, D. Dual-band A-sandwich radome design for airborne applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 218–221. [Google Scholar] [CrossRef]
- Costa, F.; Monorchio, A. A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 2012, 60, 2740–2747. [Google Scholar] [CrossRef]
- Omar, A.A.; Shen, Z. Thin 3-D Bandpass Frequency-Selective Structure Based on Folded Substrate for Conformal Radome Applications. IEEE Trans. Antennas Propag. 2019, 67, 282–290. [Google Scholar] [CrossRef]
- Narayan, S.; Gulati, G.; Sangeetha, B.; Nair, R.U. Novel Metamaterial-Element-Based FSS for Airborne Radome Applications. IEEE Trans. Antennas Propag. 2018, 66, 4695–4707. [Google Scholar] [CrossRef]
- Tricoles, G.P. Radome Electromagnetic Design. In Antenna Handbook; Springer: Boston, MA, USA, 1988; Volume 3, pp. 154–196. [Google Scholar]
- Kozakoff, D.J. Analysis of Radome-Enclosed Antennas, 2nd ed.; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Wait, J.R. Electromagnetic Waves in Stratified Media, 1st ed.; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Knott, E.F. A Progression of High-Frequency RCS Prediction Techniques. Proc. IEEE. 1985, 73, 252–264. [Google Scholar] [CrossRef]
- Men, H.; Dou, W. Hybrid IPO-BI-FEM for the analysis of 2D large radome with complex structure. Microw. Opt. Technol. Lett. 2009, 51, 1348–1353. [Google Scholar]
- Li, L.W.; Leong, M.S.; Ma, X.; Yeo, T.S. Analysis of a circular aperture antenna and its covered dielectric hemispherical radome shell over ground plane: Near- and far-zone patterns. Microw. Opt. Technol. Lett. 1999, 21, 238–243. [Google Scholar] [CrossRef]
- d’Elia, U.; Pelosi, G.; Pichot, C.; Selleri, S.; Zoppi, M. A physical optics approach to the analysis of large frequency selective radomes. Prog. Electromagn. Res. 2013, 138, 537–553. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Chun, H.J.; Hong, I.P.; Kim, Y.J.; Park, Y.B. Analysis of FSS Radomes Based on Physical Optics Method and Ray Tracing Technique. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 868–871. [Google Scholar]
- Harrington, R.F. Field Computation by Moment Methods; McMillan: New York, NY, USA, 1968. [Google Scholar]
- Song, J.M.; Chew, W.C. Multilevel Fast Multipole Algorithm for Solving Combined Field Integral Equations of Electromagnetic Scattering. Microw. Opt. Technol. Lett. 1995, 10, 14–19. [Google Scholar] [CrossRef]
- Garcia, E.; Delgado, C.; Lozano, L.; Gonzalez, I.; Catedra, F. An efficient hybrid-scheme combining the characteristic basis function method and the multilevel fast multipole algorithm for solving bistatic RCS and radiation problems. Prog. Electromagn. Res. B 2011, 34, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Delgado, C.; Catedra, F. Efficient Generation of Macro Basis Functions for Radiation Problems Using Ray-Tracing Derived Dynamic Thresholds. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 849–852. [Google Scholar] [CrossRef]
- Delgado, C.; Catedra, F. Combination of ray-tracing and the method of moments for electromagnetic radiation analysis using reduced meshes. J. Comput. Phys. 2018, 361, 412–423. [Google Scholar] [CrossRef]
- Delgado, C.; Garcia, E.; Catedra, F. Hybrid Iterative Approach Combined with Domain Decomposition for the Analysis of Large Electromagnetic Problems. Proc. IEEE 2013, 66, 320–331. [Google Scholar] [CrossRef]
- Delgado, C.; Catedra, F. Sparse Approximate Inverse Preconditioner with Parametric Sparsity Pattern Applied to the Macrobasis Function Methods. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 849–852. [Google Scholar] [CrossRef]
- García, E.; Delgado, C.; Cátedra, F. Efficient Iterative Analysis Technique of Complex Radome Antennas based on the Characteristic Basis Function Method. IEEE Trans. Antennas Propag. 2021, in press. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
Approach | Pre-Processing Time 1 (s) | Iteration Time (s) | Total CPU-Time (s) |
---|---|---|---|
MoM-MLFMA (newFASANT) | 13,586 | 27,964 | 41,550 |
Proposed approach, 1 iteration | 17,670 | 4655 | 22,325 |
Proposed approach, 2 iterations | 17,672 | 6650 | 24,320 |
Proposed approach, 3 iterations | 17,672 | 9392 | 27,062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, C.; García, E.; Cátedra, F. Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition. Electronics 2021, 10, 2196. https://doi.org/10.3390/electronics10182196
Delgado C, García E, Cátedra F. Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition. Electronics. 2021; 10(18):2196. https://doi.org/10.3390/electronics10182196
Chicago/Turabian StyleDelgado, Carlos, Eliseo García, and Felipe Cátedra. 2021. "Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition" Electronics 10, no. 18: 2196. https://doi.org/10.3390/electronics10182196
APA StyleDelgado, C., García, E., & Cátedra, F. (2021). Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition. Electronics, 10(18), 2196. https://doi.org/10.3390/electronics10182196