Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition
Abstract
1. Introduction
2. Description of the Numerical Technique
2.1. Separation of Antenna and Radome Domains
2.2. Application of MLFMA and CBFM
2.3. Iterative Domain Decomposition Analysis
- Obtain the excitation over the antenna domain:
- Obtain the current on the antenna domain by solving iteratively (applying MLFMA):
- Obtain the field impressed on the radome domain due to as follows:
- Retrieve the current on the radome domain by solving the following:
- The total current distribution for the n-th iteration, as indicated by Equation (3) and expressed in terms of CBFs, is thus the following:
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nair, R.U.; Jha, R.M. Analysis of Airborne Radomes: Trends and Perspectives. IEEE Antennas Propag. Mag. 2014, 56, 276–298. [Google Scholar] [CrossRef]
- MacDonald, M.E. An Overview of Radomes for Large Ground-Based Antennas. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 36–43. [Google Scholar] [CrossRef]
- Cady, W.M. Radar Scanners and Radomes; Ulan Press: Oxford, UK, 2012. [Google Scholar]
- Althuwayb, A.A. Enhanced radiation gain and efficiency of a metamaterial inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems. Microw Opt Technol. Lett. 2021, 63, 1892–1898. [Google Scholar] [CrossRef]
- Elfergani, I.T.E.; Hussaini, A.S.; Rodriguez, J.; Abd-Alhameed, R. Antenna Fundamentals for Legacy Mobile Applications and Beyond; Springer: Cham, Switzerland, 2017; pp. 1–659. [Google Scholar]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E. A new planar broadband antenna based on meandered line loops for portable wireless communication devices. Radio Sci. 2016, 51, 1109–1117. [Google Scholar] [CrossRef]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R. The resonating MTM-based miniaturized antennas for wide-band RF-microwave systems. Microw. Opt. Technol. Lett. 2015, 57, 2339–2344. [Google Scholar] [CrossRef]
- Shirkolaei, M.M. High Efficiency X-Band Series-Fed Microstrip Array Antenna. Prog. Electromagn. Res. C 2020, 105, 35–45. [Google Scholar] [CrossRef]
- Alibakhshi-Kenari, M.; Virdee, B.S.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.O.; See, C.H.; Liu, B.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; et al. A Comprehensive Survey of “Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications”. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Mei, P.; Lin, X.Q.; Yu, J.W.; Zhang, P.C.; Boukarkar, A. A Low Radar Cross Section and Low Profile Antenna Co-Designed With Absorbent Frequency Selective Radome. IEEE Trans. Antennas Propag. 2018, 66, 409–413. [Google Scholar] [CrossRef]
- Nair, R.U.; Jha, R.M. Electromagnetic Performance Analysis of a Novel Monolithic Radome for Airborne Applications. IEEE Trans. Antennas Propag. 2009, 57, 3664–3668. [Google Scholar] [CrossRef]
- Kedar, A.; Revankar, U.K. Parametric Study of Flat Sandwich Multilayer Radome. Prog. Electromagn. Res. 2006, 66, 253–265. [Google Scholar] [CrossRef][Green Version]
- Zhou, L.; Pei, Y.; Fang, D. Dual-band A-sandwich radome design for airborne applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 218–221. [Google Scholar] [CrossRef]
- Costa, F.; Monorchio, A. A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 2012, 60, 2740–2747. [Google Scholar] [CrossRef]
- Omar, A.A.; Shen, Z. Thin 3-D Bandpass Frequency-Selective Structure Based on Folded Substrate for Conformal Radome Applications. IEEE Trans. Antennas Propag. 2019, 67, 282–290. [Google Scholar] [CrossRef]
- Narayan, S.; Gulati, G.; Sangeetha, B.; Nair, R.U. Novel Metamaterial-Element-Based FSS for Airborne Radome Applications. IEEE Trans. Antennas Propag. 2018, 66, 4695–4707. [Google Scholar] [CrossRef]
- Tricoles, G.P. Radome Electromagnetic Design. In Antenna Handbook; Springer: Boston, MA, USA, 1988; Volume 3, pp. 154–196. [Google Scholar]
- Kozakoff, D.J. Analysis of Radome-Enclosed Antennas, 2nd ed.; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Wait, J.R. Electromagnetic Waves in Stratified Media, 1st ed.; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Knott, E.F. A Progression of High-Frequency RCS Prediction Techniques. Proc. IEEE. 1985, 73, 252–264. [Google Scholar] [CrossRef]
- Men, H.; Dou, W. Hybrid IPO-BI-FEM for the analysis of 2D large radome with complex structure. Microw. Opt. Technol. Lett. 2009, 51, 1348–1353. [Google Scholar]
- Li, L.W.; Leong, M.S.; Ma, X.; Yeo, T.S. Analysis of a circular aperture antenna and its covered dielectric hemispherical radome shell over ground plane: Near- and far-zone patterns. Microw. Opt. Technol. Lett. 1999, 21, 238–243. [Google Scholar] [CrossRef]
- d’Elia, U.; Pelosi, G.; Pichot, C.; Selleri, S.; Zoppi, M. A physical optics approach to the analysis of large frequency selective radomes. Prog. Electromagn. Res. 2013, 138, 537–553. [Google Scholar] [CrossRef]
- Kim, J.H.; Chun, H.J.; Hong, I.P.; Kim, Y.J.; Park, Y.B. Analysis of FSS Radomes Based on Physical Optics Method and Ray Tracing Technique. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 868–871. [Google Scholar]
- Harrington, R.F. Field Computation by Moment Methods; McMillan: New York, NY, USA, 1968. [Google Scholar]
- Song, J.M.; Chew, W.C. Multilevel Fast Multipole Algorithm for Solving Combined Field Integral Equations of Electromagnetic Scattering. Microw. Opt. Technol. Lett. 1995, 10, 14–19. [Google Scholar] [CrossRef]
- Garcia, E.; Delgado, C.; Lozano, L.; Gonzalez, I.; Catedra, F. An efficient hybrid-scheme combining the characteristic basis function method and the multilevel fast multipole algorithm for solving bistatic RCS and radiation problems. Prog. Electromagn. Res. B 2011, 34, 327–343. [Google Scholar] [CrossRef]
- Delgado, C.; Catedra, F. Efficient Generation of Macro Basis Functions for Radiation Problems Using Ray-Tracing Derived Dynamic Thresholds. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 849–852. [Google Scholar] [CrossRef]
- Delgado, C.; Catedra, F. Combination of ray-tracing and the method of moments for electromagnetic radiation analysis using reduced meshes. J. Comput. Phys. 2018, 361, 412–423. [Google Scholar] [CrossRef]
- Delgado, C.; Garcia, E.; Catedra, F. Hybrid Iterative Approach Combined with Domain Decomposition for the Analysis of Large Electromagnetic Problems. Proc. IEEE 2013, 66, 320–331. [Google Scholar] [CrossRef]
- Delgado, C.; Catedra, F. Sparse Approximate Inverse Preconditioner with Parametric Sparsity Pattern Applied to the Macrobasis Function Methods. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 849–852. [Google Scholar] [CrossRef]
- García, E.; Delgado, C.; Cátedra, F. Efficient Iterative Analysis Technique of Complex Radome Antennas based on the Characteristic Basis Function Method. IEEE Trans. Antennas Propag. 2021, in press. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
Approach | Pre-Processing Time 1 (s) | Iteration Time (s) | Total CPU-Time (s) |
---|---|---|---|
MoM-MLFMA (newFASANT) | 13,586 | 27,964 | 41,550 |
Proposed approach, 1 iteration | 17,670 | 4655 | 22,325 |
Proposed approach, 2 iterations | 17,672 | 6650 | 24,320 |
Proposed approach, 3 iterations | 17,672 | 9392 | 27,062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, C.; García, E.; Cátedra, F. Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition. Electronics 2021, 10, 2196. https://doi.org/10.3390/electronics10182196
Delgado C, García E, Cátedra F. Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition. Electronics. 2021; 10(18):2196. https://doi.org/10.3390/electronics10182196
Chicago/Turabian StyleDelgado, Carlos, Eliseo García, and Felipe Cátedra. 2021. "Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition" Electronics 10, no. 18: 2196. https://doi.org/10.3390/electronics10182196
APA StyleDelgado, C., García, E., & Cátedra, F. (2021). Fast Hybrid Computational Technique for the Analysis of Radome Structures Using Dual Domain Decomposition. Electronics, 10(18), 2196. https://doi.org/10.3390/electronics10182196