Performance Evaluation of Multiple Electrodes Based Electrical Impedance Spectroscopic Probe for Screening of Cervical Intraepithelial Neoplasia
Abstract
:1. Introduction
2. Electrical Impedance Spectroscopy for Screening Cervical Intraepithelial Neoplasia
2.1. Basic Principle of Multi-Electrode EIS Probe
2.2. Probe with Multiple Active Electrodes
2.3. Multi-Channel Electrical Impedance Spectroscopy
2.3.1. Impedance Measurement Module (IMM)
2.3.2. Switching and Connector Modules
2.3.3. Controller Module
2.4. Calibration
- Connecting the developed calibration board made of precision resistors instead of a probe.
- Injecting current to a 1 k resistor on the calibration board and measuring the amplitude of injecting current by I/V (current-to-voltage) converter.
- Injecting current to a 0 resistor on the calibration board and measuring the amplitude of injecting current by I/V converter.
- Calculating output impedance using the voltage drop method [19].
- Changing the values of digital potentiometers in the current source circuit and repeating steps of 2–4.
- Finding the setting for maximum output impedance of the current source from matching the balance of resistance ratio in the improved Howland circuits.
- Connecting the dedicated GIC circuit at that operating frequency to the improved Howland circuits with the found settings in step 6.
- Changing the values of digital potentiometers in the dedicated GIC circuit and repeat actions 2–4.
- Finding the setting for maximum output impedance of the current source by adjusting inductance in the GIC circuit to find LC resonance conditions for canceling capacitance generated from cable and switches.
3. Experimental Setup
3.1. Carrot in Saline Phantom
3.2. Graphite-Agar Phantoms
3.3. Giant Vesicle Phantoms
4. Results and Discussion
4.1. Basic Performance of EIS System
4.2. Carrot in the Saline Phantom
4.3. Graphite-Agar Phantoms
4.4. Giant Vesicle Phantoms
4.5. Toward Clinical Trials
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet 2019, 393, 169–182. [Google Scholar] [CrossRef]
- Mayrand, M.H.; Duarte-Franco, E.; Rodrigues, I.; Walter, S.D.; Hanley, J.; Ferenczy, A.; Ratnam, S.; Coutlee, F.; Franco, E.L. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N. Engl. J. Med. 2007, 357, 1579–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavel, C.; Masure, M.; Bory, J.P.; Putaud, I.; Mangeonjean, C.; Lorenzato, M.; Nazeyrollas, P.; Gabriel, R.; Quereux, C.; Birembaut, P. Human papillomavirus testing in primary screening for the detection of high-grade cervical lesions: A study of 7932 women. Br. J. Cancer 2001, 84, 1616–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigaud, B.; Morucci, J.P.; Chauveau, N. Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: Impedance spectrometry. Crit. Rev. Biomed. Eng. 1996, 24, 257–351. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251. [Google Scholar] [CrossRef] [Green Version]
- White, F.H.; Gohari, K. Alterations in the volume of the intercellular space between epithelial-cells of the hamster cheek-pouch: Quantitative studies of normal and carcinogen-treated tissues. J. Oral Pathol. Med. 1984, 13, 244–254. [Google Scholar] [CrossRef]
- Sorensen, F.B.; Bichel, P.; Jakobsen, A. Stereological estimates of nuclear volume in squamous-cell carcinoma of the uterine cervix and its precursors. Virchows Archiv A Pathol. Anat. Histopath. 1991, 418, 225–233. [Google Scholar] [CrossRef]
- Walker, D.C.; Brown, B.H.; Hose, D.R.; Smallwood, R.H. Modelling the electrical impedivity of normal and premalignant cervical tissue. Electron. Lett. 2000, 36, 1603–1604. [Google Scholar] [CrossRef] [Green Version]
- Abdul, S.; Brown, B.H.; Milnes, P.; Tidy, J.A. A clinical study of the use of impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN). Gynecol. Oncol. 2005, 99, S64–S66. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.H.; Tidy, J.A.; Boston, K.; Blackett, A.D.; Smallwood, R.H.; Sharp, F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet 2000, 355, 892–895. [Google Scholar] [CrossRef]
- Das, L.; Das, S.; Chatterjee, J. Electrical bioimpedance analysis: A new method in cervical cancer screening. J. Med. Eng. 2015, 2015, 636075. [Google Scholar] [CrossRef] [Green Version]
- Olarte Echeverri, G.; Aristizábal Botero, W.; Gallego Sánchez, P.A. Evaluation of electrical impedance spectroscopy for cervical intraepithelial lesions detection. Biosalud 2015, 14, 26–35. [Google Scholar] [CrossRef]
- Kwon, H.; McEwan, A.L.; Oh, T.I.; Farooq, A.; Woo, E.J.; Seo, J.K. A local region of interest imaging method for electrical impedance tomography with internal electrodes. Comput. Math. Methods Med. 2013, 2013, 964918. [Google Scholar] [CrossRef] [PubMed]
- Karki, B.; Wi, H.; McEwan, A.; Kwon, H.; Oh, T.I.; Woo, E.J.; Seo, J.K. Evaluation of a multi-electrode bioimpedance spectroscopy tensor probe to detect the anisotropic conductivity spectra of biological tissues. Meas. Sci. Technol. 2014, 25, 075702. [Google Scholar] [CrossRef]
- Kwon, H.; Wi, H.; Karki, B.; Lee, E.J.; McEwan, A.; Woo, E.J.; Harrach, B.; Seo, J.K.; Oh, T.I. Bioimpedance spectroscopy tensor probe for anisotropic measurements. Electron. Lett. 2012, 48, 1253–1255. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.K.; Woo, E.J. Nonlinear Inverse Problems in Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Cherepenin, V.; Karpov, A.; Korjenevsky, A.; Kornienko, V.; Mazaletskaya, A.; Mazourov, D.; Meister, D. A 3D electrical impedance tomography (EIT) system for breast cancer detection. Physiol. Meas. 2001, 22, 9–18. [Google Scholar] [CrossRef]
- Wi, H.; Sohal, H.; McEwan, A.L.; Woo, E.J.; Oh, T.I. Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring. IEEE Trans. Circuits Syst. 2013, 8, 119–128. [Google Scholar]
- Holder, D.S. Electrical Impedance Tomography: Methods, History Furthermore, Applications; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- IEC 60601-1:2005+AMD1:2012+AMD2:2020 CSV. Medical Electrical Equipment—Part 1: General Requirements for Basic Safety and Essential Performance; International Organization for Standardization: Geneva, Switzerland, 2020. [Google Scholar]
- IEC 60601-1-2:2014+AMD1:2020 CSV. Consolidated Version Medical Electrical Equipment—Part 1–2: General Requirements for Basic Safety and Essential Performance—Collateral Standard: Electromagnetic Disturbances—Requirements and Tests; International Organization for Standardization: Geneva, Switzerland, 2020. [Google Scholar]
- Kao, T.J.; Saulnier, G.J.; Isaacson, D.; Szabo, T.L.; Newell, J.C. A versatile high-permittivity phantom for EIT. IEEE. Trans. Biomed. Eng. 2008, 55, 2601–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, B.K.; Katoch, N.; Kim, H.J.; Park, J.A.; Ko, I.O.; Kwon, O.I.; Woo, E.J. Validation of conductivity tensor imaging using giant vesicle suspensions with different ion mobilities. Biomed. Eng. Online 2020, 19, 1–17. [Google Scholar] [CrossRef]
- Schwan, H.P. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957, 5, 147–209. [Google Scholar] [PubMed]
- Dimova, R.; Riske, K.A.; Aranda, S.; Bezlyepkina, N.; Knorr, R.L.; Lipowsky, R. Giant vesicles in electric fields. Soft Matter 2007, 3, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.H.; Milnes, P.; Abdul, S.; Tidy, J.A. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: A prospective study. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Mahara, A.; Hyams, E.S.; Schned, A.R.; Halter, R.J. Prostate cancer detection using composite impedance metric. IEEE Trans. Med. Imaging 2016, 35, 2513–2523. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.K.; Mahara, A.; Khan, S.; Hyams, E.S.; Schned, A.R.; Pettus, J.; Halter, R.J. Comparative study of separation between prostatic malignant and benign tissue using electrical impedance spectroscopy and electrical impedance tomography. Physiol. Meas. 2017, 38, 1242–1261. [Google Scholar] [CrossRef] [PubMed]
- Balasubramani, L.; Brown, B.H.; Healey, J.; Tidy, J.A. The detection of cervical intraepithelial neoplasia by electrical impedance spectroscopy: The effects of acetic acid and tissue homogeneity. Gynecol. Oncol. 2009, 115, 267–271. [Google Scholar] [CrossRef]
Phantom No. | #1 | #2 | #3 |
---|---|---|---|
Distilled water (mL) | 500 | 500 | 500 |
Agar (g) | 20 | 20 | 20 |
NaCl (g) | 0.5 | 0.5 | 0.5 |
Graphite (g) | 10 | 50 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Jeong, Y.; Park, D.; Oh, T. Performance Evaluation of Multiple Electrodes Based Electrical Impedance Spectroscopic Probe for Screening of Cervical Intraepithelial Neoplasia. Electronics 2021, 10, 1933. https://doi.org/10.3390/electronics10161933
Zhang T, Jeong Y, Park D, Oh T. Performance Evaluation of Multiple Electrodes Based Electrical Impedance Spectroscopic Probe for Screening of Cervical Intraepithelial Neoplasia. Electronics. 2021; 10(16):1933. https://doi.org/10.3390/electronics10161933
Chicago/Turabian StyleZhang, Tingting, Youjeong Jeong, Dongchoon Park, and Tongin Oh. 2021. "Performance Evaluation of Multiple Electrodes Based Electrical Impedance Spectroscopic Probe for Screening of Cervical Intraepithelial Neoplasia" Electronics 10, no. 16: 1933. https://doi.org/10.3390/electronics10161933
APA StyleZhang, T., Jeong, Y., Park, D., & Oh, T. (2021). Performance Evaluation of Multiple Electrodes Based Electrical Impedance Spectroscopic Probe for Screening of Cervical Intraepithelial Neoplasia. Electronics, 10(16), 1933. https://doi.org/10.3390/electronics10161933