Compact 2 × 2 Circularly Polarized Aperture-Coupled Antenna Array for Ka-Band Satcom-on-the-Move Applications
Abstract
:1. Introduction
2. Antenna Array Design
Radiating Element Design
3. Experimental Results
3.1. Single Radiating Element
3.2. 2 × 2 Array Performance
3.2.1. Coupling
3.2.2. Radiation Parameters
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marcellini, L.; Lo Forti, R.; Bellaveglia, G. Future developments trend for Ku and Ka antenna for satcom on the move. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 2346–2350. [Google Scholar]
- Borisov, S.; Shishlov, A. Antennas for Satcom-on-the-move, review. In Proceedings of the 2014 International Conference on Engineering and Telecommunication, Moscow, Russia, 26–28 November 2014. [Google Scholar]
- Safavi-Naeini, S.; Slekys, A.G. Electronic beam-scanning technology for small satellite communication systems and their future development. In Handbook of Small Satellites; Pelton, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 527–553. [Google Scholar]
- Vaccaro, S.; Diamond, L.; Runyon, D.; Vigano, M.C. Ka-band mobility terminals enabling new services. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 2617–2618. [Google Scholar]
- Kilic, O.; Zaghloul, A.I.; Kohls, E.C.; Gupta, R.K.; Jimenez, D. Flat antenna design considerations for satellite-on-the move and satel-lite-on-the-pause (SOTM/SOTP) applications. In Proceedings of the 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force, McLean, VA, USA, 28–31 October 2001; Volume 2, pp. 790–794. [Google Scholar]
- Baggen, L.; Holzwarth, S. Satcom-on-the-move: Digital beam forming versus phased array. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 2610–2614. [Google Scholar]
- Rebeiz, G.M.; Paulsen, L.M. Advances in SATCOM phased arrays using silicon technologies. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1877–1879. [Google Scholar]
- McMorrow, R.; Corman, D.; Crofts, A. All silicon mmW planar active antennas: The convergence of technology, applications, and architecture. In Proceedings of the 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 13–15 November 2017. [Google Scholar]
- Kibaroglu, K.; Sayginer, M.; Phelps, T.; Rebeiz, G.M. A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8–12-Gb/s 5G link at 300 meters without any calibration. IEEE Trans. Microw. Theory Tech. 2018, 66, 5796–5811. [Google Scholar] [CrossRef]
- Stoneback, M.; Madsen, K. A planar all-silicon 256-element Ka-band phased array for high-altitude platforms (HAPs) application. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 783–786. [Google Scholar]
- Sandhu, A.I.; Arnieri, E.; Amendola, G.; Boccia, L.; Meniconi, E.; Ziegler, V. Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band. IEEE Trans. Antennas Propag. 2016, 64, 2270–2282. [Google Scholar] [CrossRef] [Green Version]
- Amendola, G.; Arnieri, E.; Boccia, L.; Ziegler, V. Annular ring slot radiating element for integrated millimeter wave arrays. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 3082–3085. [Google Scholar]
- Shahramian, S.; Holyoak, M.J.; Baeyens, Y. A 16-element W-band phased array transceiver chipset with flip-chip PCB integrated antennas for multi-gigabit data links. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, USA, 17–19 May 2015; pp. 27–30. [Google Scholar]
- Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. A quad-core 28–32 GHz transmit/receive 5G phased-array IC with flip-chip packaging in SiGe BiCMOS. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 6–8 June 2017; pp. 1892–1894. [Google Scholar]
- Daftari, N.; Gilreath, L.; Smith, A.D.; Thai, M.; Thai, K.; Watanabe, M.; Wu, Y.-C.; Jackson, C.; Danial, A.; Scherrer, D.; et al. A wideband 25–35 GHz 5-bit low power 2 × 2 CMOS beam forming network IC for reconfigurable phased arrays. In Proceedings of the 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, USA, 11–14 October 2015. [Google Scholar]
- Bai, X.; Qu, S.; Xia, R. Ka-band cavity-backed detached crossed dipoles for circular polarization. IEEE Trans. Antennas Propag. 2014, 62, 5944–5950. [Google Scholar] [CrossRef]
- Lang, Y.; Qu, S.; Chen, J. Wideband circularly polarized substrate integrated cavity-backed antenna array. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1513–1516. [Google Scholar] [CrossRef]
- Głogowski, R.; Zürcher, J.; Mosig, J.R.; Peixeiro, C. Circularly polarized aperture coupled stacked patch antenna element for Ka-band. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 911–914. [Google Scholar]
- Al-Saedi, H.; Ali, J.K.; Abdel-Wahab, W.M.; Gigoyan, S.; Safavi-Naeini, S. A dual circularly polarized patch antenna for broadband millimeter wave (MMW) communication systems. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Mexico, 26 June–1 July 2016; pp. 593–594. [Google Scholar]
- Chaloun, T.; Waldschmidt, C.; Menzel, W. Wide-angle scanning cavity antenna element for mobile Satcom applications at Ka band. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016. [Google Scholar]
- Kim, Y.-J.; Kim, Y.-B.; Lee, H.-L. mmWave high gain planar H-shaped shorted ring antenna array. Sensors 2020, 20, 5168. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Zhang, Y.; Chen, Z.; Cao, S. A Ka-band high-gain circularly polarized microstrip antenna array. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 1115–1118. [Google Scholar] [CrossRef]
- Lambard, T.; Lafond, O.; Himdi, M.; Jeuland, H.; Bolioli, S.; Le Coq, L. Design of a Ka-band wide scanning phased array antenna. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009; pp. 1247–1251. [Google Scholar]
- Gorski, P.; Silva, J.S.; Mosig, J.R. Wideband, low profile and circularly polarized K/Ka band antenna. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 12–17 April 2015. [Google Scholar]
- Anand, G.; Lahiri, R.; Sadhu, R. Wide band microstrip to microstrip vertical coaxial transition for radar & EW applications. In Proceedings of the 2016 Asia-Pacific Microwave Conference (APMC), New Delhi, India, 5–9 December 2016. [Google Scholar]
- Sain, A.; Melde, K.L. Impact of ground via placement in grounded coplanar waveguide interconnects. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 6, 136–144. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Bernardo-Clemente, B.; Uz Zaman, A.; Yang, J. 8 × 8 Ka-band dual-polarized array antenna based on gap waveguide technology. IEEE Trans. Antennas Propag. 2019, 67, 4579–4588. [Google Scholar] [CrossRef] [Green Version]
- Lambard, T.; Lafond, O.; Himdi, M.; Jeuland, H.; Bolioli, S.; Le Coq, L. Ka-band phased array antenna for high-data-rate SATCOM. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 256–259. [Google Scholar] [CrossRef]
- Luo, Q.; Gao, S.; Zhang, C.; Zhou, D.; Chaloun, T.; Menzel, W.; Ziegler, V.; Sobhy, M. Design and analysis of a reflectarray using slot antenna elements for Ka-band SatCom. IEEE Trans. Antennas Propag. 2015, 63, 1365–1374. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, Y.; Chen, Z.; Yang, C. Development of a Ka-band wideband circularly polarized 64-element microstrip antenna array with double application of the sequential rotation feeding technique. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1270–1273. [Google Scholar] [CrossRef]
- Tang, X.; Qing, X.; Liu, W.; Nasimuddin; Zhai, G.; Chen, Z.N. Effect of mutual coupling on Ka-band circularly polarized beam scanning antenna array. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Mexico, 26 June–1 July 2016; pp. 2193–2194. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghdadi, H.; Royo, G.; Bel, I.; Cortés, F.J.; Celma, S. Compact 2 × 2 Circularly Polarized Aperture-Coupled Antenna Array for Ka-Band Satcom-on-the-Move Applications. Electronics 2021, 10, 1621. https://doi.org/10.3390/electronics10141621
Baghdadi H, Royo G, Bel I, Cortés FJ, Celma S. Compact 2 × 2 Circularly Polarized Aperture-Coupled Antenna Array for Ka-Band Satcom-on-the-Move Applications. Electronics. 2021; 10(14):1621. https://doi.org/10.3390/electronics10141621
Chicago/Turabian StyleBaghdadi, Hisham, Guillermo Royo, Ismael Bel, Francisco Javier Cortés, and Santiago Celma. 2021. "Compact 2 × 2 Circularly Polarized Aperture-Coupled Antenna Array for Ka-Band Satcom-on-the-Move Applications" Electronics 10, no. 14: 1621. https://doi.org/10.3390/electronics10141621
APA StyleBaghdadi, H., Royo, G., Bel, I., Cortés, F. J., & Celma, S. (2021). Compact 2 × 2 Circularly Polarized Aperture-Coupled Antenna Array for Ka-Band Satcom-on-the-Move Applications. Electronics, 10(14), 1621. https://doi.org/10.3390/electronics10141621