Textile Antenna-Sensor for In Vitro Diagnostics of Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antenna-Sensor Design
2.2. Samples Preparation and Test Setup
- Hypoglycemia: 70 mg/dL.
- Normoglycemia: 80 110 mg/dL.
- Hyperglycemia: 120 mg/dL.
3. Results
RF Response of the Glucose Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. Available online: https://www.idf.org/aboutdiabetes/what-is-diabetes.html (accessed on 21 May 2021).
- World Health Organization. Available online: https://www.who.int/health-topics/diabetes#tab=tab_3 (accessed on 21 May 2021).
- Nathan, D.M.; DCCT/Edic Research Group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 2014, 37, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Chang, S.J.; Chen, C.-J.; Liu, J.-T. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors 2020, 20, 6925. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation Guideline Development Group. Global guideline for type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 104, 1–52. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.-W.; Park, S.; Lee, Y.-H.; Balkau, B.; Yi, J.-J. Fasting Glucose and All-Cause Mortality by Age in Diabetes: A Prospective Cohort Study. Diabetes Care 2018, 41, 623–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.H.; Litwin, S.E. Hyperglycemia and adverse outcomes in acute coronary syndromes: Is serum glucose the provocateur or innocent bystander? Diabetes 2014, 63, 2209–2212. [Google Scholar] [CrossRef] [Green Version]
- Stuart, D.A.; Yuen, J.M.; Shah, N.; Lyandres, O.; Yonzon, C.R.; Glucksberg, M.R.; Walsh, J.T.; Van Duyne, R.P. In Vivo Glucose Measurement by Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2006, 78, 7211–7215. [Google Scholar] [CrossRef]
- Li, N.; Zang, H.; Sun, H.; Jiao, X.; Wang, K.; Liu, T.C.-Y.; Meng, Y. A Noninvasive Accurate Measurement of Blood Glucose Levels with Raman Spectroscopy of Blood in Microvessels. Molecules 2019, 24, 1500. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Liu, Y.; Li, X.; Zhao, J.; Ren, Z.; Pang, H. Nitrogen-Doped Carbon–Copper Nanohybrids as Electrocatalysts in H2O2 and Glucose Sensing. ChemElectroChem 2014, 1, 799–807. [Google Scholar] [CrossRef]
- Potts, R.O.; Tamada, J.A.; Tierney, M.J. Glucose monitoring by reverse iontophoresis. Diabetes Metab. Res. Rev. 2002, 18, S49–S53. [Google Scholar] [CrossRef]
- Steiner, M.-S.; Duerkop, A.; Wolfbeis, O.S. Optical methods for sensing glucose. Chem. Soc. Rev. 2011, 40, 4805–4839. [Google Scholar] [CrossRef]
- Qiang, T.; Wang, C.; Kim, N.-Y. Quantitative detection of glucose level based on radiofrequency patch biosensor combined with volume-fixed structures. Biosens. Bioelectron. 2017, 98, 357–363. [Google Scholar] [CrossRef]
- El Gharbi, M.; Fernández-García, R.; Ahyoud, S.; Gil, I. A Review of Flexible Wearable Antenna Sensors: Design, Fabrication Methods, and Applications. Materials 2020, 13, 3781. [Google Scholar] [CrossRef]
- Sen, K.; Anand, S. Demonstration of Microstrip Sensor for the Feasibility Study of Non-invasive Blood-Glucose Sensing. MAPAN 2020, 36, 193–199. [Google Scholar]
- Khadase, R.; Nandgaonkar, A. Design of Implantable MSA for Glucose Monitoring. In Proceedings of the International Conference on Communication and Signal Processing 2016 (ICCASP 2016), Lonere, India, 26–27 December 2016. [Google Scholar]
- Saha, S.; Cano-Garcia, H.; Sotiriou, I.; Lipscombe, O.; Gouzouasis, I.; Koutsoupidou, M.; Palikaras, G.; Mackenzie, R.; Reeve, T.; Kosmas, P.; et al. A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves using Micro strip Patch Antennas. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, C.; Ferreira da Silva, A.; Gomes, J.; Simoes, R. Wearable e-textile technologies: A review on sensors, actuators and control elements. Inventions 2018, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile Materials for the Design of Wearable Antennas: A Survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef]
- Gennarelli, G.; Romeo, S.; Scarfi, M.R.; Soldovieri, F. A Microwave Resonant Sensor for Concentration Measurements of Liquid Solutions. IEEE Sens. J. 2013, 13, 1857–1864. [Google Scholar] [CrossRef]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S.; Ngo, K.; Shubair, R.M.; Alquie, G.; Deshours, F.; Kokabi, H. Multiple-Cell Microfluidic Dielectric Resonator for Liquid Sensing Applications. IEEE Sens. J. 2020, 21, 6094–6104. [Google Scholar] [CrossRef]
- Govind, G.; Akhtar, M.J. Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions. IEEE Sens. J. 2019, 19, 11900–11907. [Google Scholar] [CrossRef]
- Li, L.; Uttamchandani, D. A Microwave Dielectric Biosensor Based on Suspended Distributed MEMS Transmission Lines. IEEE Sens. J. 2009, 9, 1825–1830. [Google Scholar] [CrossRef] [Green Version]
- Turgul, V.; Kale, I. Simulating the Effects of Skin Thickness and Fingerprints to Highlight Problems with Non-Invasive RF Blood Glucose Sensing from Fingertips. IEEE Sens. J. 2017, 17, 7553–7560. [Google Scholar] [CrossRef]
Parameters | Dimensions (mm) |
---|---|
w | 35 |
l | 35 |
3.1 | |
19 | |
a | 15.4 |
b | 9.4 |
5 |
Ref | Measurement Technique | Concentration (mg/dL) | Area (mm2) | Resonant Frequency (GHz) | Substrate | Sensing Parameters | S (kHz per mg/dL) |
---|---|---|---|---|---|---|---|
[21] | Rectangular Waveguide Cavity | 0–25,000 | 110 × 54.5 | 1.9 | Rigid | 0.4 | |
[17] | Inverted-F Antenna (PIFA) | 0–530 | 38 × 38 | 0.53 | Rigid | 3.54 | |
[22] | CSRR resonator | 70–150 | 59 × 20 | 1–6 | Rigid (FR-4) | 67–11 | |
[23] | Split ring resonator | 0–5000 | 50 × 20 | 4.18 | Rigid (Rogers RT6006) | 26 | |
[16] | Microstrip Patch Antenna-Sensor | 0–400 | 42.97 × 34.60 | 2.4 | Rigid | 25 | |
[24] | Distributed MEMS transmission lines (DMTL) | 0–347.8 | - | 16 | Rigid | 16.4 | |
[25] | Single-port sensor | 100–1000 | 55 × 30 | 4.8 | Rigid (Rogers RO3006) | 14 | |
This work | Monopole Antenna-Sensor | 0–190 | 35 × 35 | 2.4 | Textile | 350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharbi, M.E.; Fernández-García, R.; Gil, I. Textile Antenna-Sensor for In Vitro Diagnostics of Diabetes. Electronics 2021, 10, 1570. https://doi.org/10.3390/electronics10131570
Gharbi ME, Fernández-García R, Gil I. Textile Antenna-Sensor for In Vitro Diagnostics of Diabetes. Electronics. 2021; 10(13):1570. https://doi.org/10.3390/electronics10131570
Chicago/Turabian StyleGharbi, Mariam El, Raúl Fernández-García, and Ignacio Gil. 2021. "Textile Antenna-Sensor for In Vitro Diagnostics of Diabetes" Electronics 10, no. 13: 1570. https://doi.org/10.3390/electronics10131570
APA StyleGharbi, M. E., Fernández-García, R., & Gil, I. (2021). Textile Antenna-Sensor for In Vitro Diagnostics of Diabetes. Electronics, 10(13), 1570. https://doi.org/10.3390/electronics10131570