Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach
Abstract
:1. Introduction
- Different convolutional-neural-network (CNN) architectures such as InceptionV3, InceptionResNetV2, MobileNetV2, and EfficientNetB0 are implemented to diagnose plant diseases on the basis of healthy- and diseased-leaf images.
- In InceptionV3 and InceptionResNetV2, standard convolution was replaced with depthwise separable convolution, which reduced the number of parameters by a large margin while achieving the same performance-accuracy level.
- The implemented InceptionV3 and InceptionResNetV2 use fewer parameters and are faster than the standard InceptionV3 and InceptionResNetV2 architectures.
- A transfer-learning-based CNN was applied on a MobileNetV2 and an EfficientNetB0 model. In each model, we froze the layer weight before the fully connected layer and removed all layers after that. We added a stack of an activation layer, batch-normalization layer, and dense layer. After each batch-normalization layer, we used a dropout layer with different dropout values, which prevents the architecture from overfitting. Since a large number of features were there, we used the L1 and L2 regularization techniques in the dense layer of all models, which simplified the models.
- We finetuned the network with different parameters to achieve optimal results. We performed extensive testing by adjusting the different parameters. We used different batch sizes in the range of 32–180, and different dropout values in the range of 0.2–0.8. To optimize the model, we tested it with different learning rates in the range of 0.01–0.0001. The models were trained with different epochs.
- To examine the robustness of the model, we used three formats of images, namely, color, segmented, and grayscale images.
- We compared the performance of the implemented models with that of other deep-learning models and state-of-the-art machine-learning techniques. Results showed that the implemented model performed better in terms of both accuracy and required training time.
2. Related Work
2.1. Shape- and Texture-Based Identification
2.2. Deep-Learning-Based Identification
3. Materials and Methods
3.1. Convolutional-Neural-Network Models
3.2. Transfer-Learning Approach
3.3. Dataset
4. Results
- Performance accuracy: the total number of correctly classified images to the total number of images.
- Loss function: how well the architecture models the data.
- Precision: the ratio of the number of correctly predicted observations (true positives) to the total number of positive predictions (true positives + false positives).
- Recall: the ratio of correctly predicted observations (true positives) to all observations in that class (true positives + false negatives).
- F1 score: the harmonic mean between precision and recall.
- Time requirement (in sec) per epoch for training each DL model.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sethy, P.K.; Barpanda, N.K.; Rath, A.K.; Behera, S.K. Deep feature based rice leaf disease identification using support vector machine. Comput. Electron. Agric. 2020, 175, 105527. [Google Scholar]
- Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 2020, 173, 105393. [Google Scholar]
- Bai, X.; Cao, Z.; Zhao, L.; Zhang, J.; Lv, C.; Li, C.; Xie, J. Rice heading stage automatic observation by multi-classifier cascade based rice spike detection method. Agric. For. Meteorol. 2018, 259, 260–270. [Google Scholar] [CrossRef]
- Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep Learning for Image-Based Cassava Disease Detection. Front. Plant Sci. 2017, 8, 1852. [Google Scholar] [CrossRef] [Green Version]
- Camargo, A.; Smith, J. An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst. Eng. 2009, 102, 9–21. [Google Scholar]
- Singh, J.; Kaur, H. Plant disease detection based on region-based segmentation and KNN classifier. In Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018, Palladam, India, 16–17 May 2018; pp. 1667–1675. [Google Scholar]
- Camargo, A.; Smith, J. Image pattern classification for the identification of disease causing agents in plants. Comput. Electron. Agric. 2009, 66, 121–125. [Google Scholar]
- Chaudhary, A.; Kolhe, S.; Kamal, R. An improved random forest classifier for multi-class classification. Inf. Process. Agric. 2016, 3, 215–222. [Google Scholar]
- Phadikar, S.; Sil, J.; Das, A.K. Rice diseases classification using feature selection and rule generation techniques. Comput. Electron. Agric. 2013, 90, 76–85. [Google Scholar] [CrossRef]
- Munisami, T.; Ramsurn, M.; Kishnah, S.; Pudaruth, S. Plant leaf recognition using shape features and colour histogram with K-nearest neighbour classifiers. Procedia Comput. Sci. 2015, 58, 740–747. [Google Scholar]
- Ebrahimi, M.; Khoshtaghaza, M.; Minaei, S.; Jamshidi, B. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 2017, 137, 52–58. [Google Scholar] [CrossRef]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Yao, Q.; Guan, Z.; Zhou, Y.; Tang, J.; Hu, Y.; Yang, B. Application of support vector machine for detecting rice diseases using shape and color texture features. In Proceedings of the 2009 International Conference on Engineering Computation, Hong Kong, China, 2–3 May 2009; pp. 79–83. [Google Scholar]
- Islam, M.; Dinh, A.; Wahid, K.; Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support vector machine. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–4. [Google Scholar]
- Tan, J.W.; Chang, S.W.; Kareem, S.B.A.; Yap, H.J.; Yong, K.T. Deep Learning for Plant Species Classification using Leaf Vein Morphometric. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 17, 82–90. [Google Scholar] [CrossRef] [PubMed]
- McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, Madison, WI, USA, 26–27 July 1998; Volume 752, pp. 41–48. [Google Scholar]
- ÖZTÜRK, A.E.; Ceylan, M. Fusion and ANN based classification of liver focal lesions using phases in magnetic resonance imaging. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn, NY, USA, 16–19 April 2015; pp. 415–419. [Google Scholar]
- Pujari, D.; Yakkundimath, R.; Byadgi, A.S. SVM and ANN based classification of plant diseases using feature reduction technique. IJIMAI 2016, 3, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Chan, C.S.; Mayo, S.J.; Remagnino, P. How deep learning extracts and learns leaf features for plant classification. Pattern Recognit. 2017, 71, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.P.; Singha, S.; Awate, S.P. Leaf classification using marginalized shape context and shape+ texture dual-path deep convolutional neural network. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 860–864. [Google Scholar]
- Li, Y.; Yang, J. Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric. 2020, 169, 105240. [Google Scholar] [CrossRef]
- Lee, S.H.; Goëau, H.; Bonnet, P.; Joly, A. New perspectives on plant disease characterization based on deep learning. Comput. Electron. Agric. 2020, 170, 105220. [Google Scholar] [CrossRef]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [Green Version]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279. [Google Scholar] [CrossRef]
- Hussain, M.; Bird, J.J.; Faria, D.R. A study on cnn transfer learning for image classification. In UK Workshop on Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2018; pp. 191–202. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 2019 International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Mokhtar, U.; Ali, M.A.; Hassanien, A.E.; Hefny, H. Identifying two of tomatoes leaf viruses using support vector machine. In Information Systems Design and Intelligent Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 771–782. [Google Scholar]
- Kaur, S.; Pandey, S.; Goel, S. Semi-automatic Leaf Disease Detection and Classification System for Soybean Culture. IET Image Process. 2018, 12, 1038–1048. [Google Scholar] [CrossRef]
- Babu, M.P.; Rao, B.S. Leaves Recognition Using Back Propagation Neural Network-Advice for Pest and Disease Control on Crops. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.3632&rep=rep1&type=pdf (accessed on 1 May 2021).
- Chouhan, S.S.; Kaul, A.; Singh, U.P.; Jain, S. Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology. IEEE Access 2018, 6, 8852–8863. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Geetharamani, G.; Pandian, A. Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput. Electr. Eng. 2019, 76, 323–338. [Google Scholar]
- Jadhav, S.B.; Udupi, V.R.; Patil, S.B. Identification of plant diseases using convolutional neural networks. Int. J. Inf. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Rangarajan Aravind, K.; Raja, P. Automated disease classification in (Selected) agricultural crops using transfer learning. Autom. Časopis Autom. Mjer. Elektron. Računarstvo Komun. 2020, 61, 260–272. [Google Scholar] [CrossRef]
- Rangarajan, A.K.; Purushothaman, R. Disease classification in eggplant using pre-trained vgg16 and msvm. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Arora, J.; Agrawal, U. Classification of Maize leaf diseases from healthy leaves using Deep Forest. J. Artif. Intell. Syst. 2020, 2, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Ghazi, M.M.; Yanikoglu, B.; Aptoula, E. Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 2017, 235, 228–235. [Google Scholar] [CrossRef]
- Li, Y.; Nie, J.; Chao, X. Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 2020, 178, 105803. [Google Scholar] [CrossRef]
- Zeng, W.; Li, M. Crop leaf disease recognition based on Self-Attention convolutional neural network. Comput. Electron. Agric. 2020, 172, 105341. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Dada, E.G.; Misra, S.; Damaševičius, R. Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing. PeerJ Comput. Sci. 2021, 7, e352. [Google Scholar] [CrossRef] [PubMed]
- Ramcharan, A.; McCloskey, P.; Baranowski, K.; Mbilinyi, N.; Mrisho, L.; Ndalahwa, M.; Legg, J.; Hughes, D.P. A mobile-based deep learning model for cassava disease diagnosis. Front. Plant Sci. 2019, 10, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adedoja, A.; Owolawi, P.A.; Mapayi, T. Deep learning based on NASNet for plant disease recognition using leave images. In Proceedings of the 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), Winterton, South Africa, 5–6 August 2019; pp. 1–5. [Google Scholar]
- Zhao, Y.; Chen, Z.; Gao, X.; Song, W.; Xiong, Q.; Hu, J.; Zhang, Z. Plant Disease Detection using Generated Leaves Based on DoubleGAN. IEEE ACM Trans. Comput. Biol. Bioinform. 2021. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence 2017, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Plant Village Dataset. Available online: https://github.com/spMohanty/PlantVillage-Dataset (accessed on 16 February 2019).
- Toda, Y.; Okura, F. How convolutional neural networks diagnose plant disease. Plant Phenomics 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Kwon, H.; Yoon, H.; Park, K.W. Acoustic-decoy: Detection of adversarial examples through audio modification on speech recognition system. Neurocomputing 2020, 417, 357–370. [Google Scholar] [CrossRef]
- Kwon, H.; Yoon, H.; Choi, D. Restricted evasion attack: Generation of restricted-area adversarial example. IEEE Access 2019, 7, 60908–60919. [Google Scholar] [CrossRef]
- Hu, X.; Yang, K.; Fei, L.; Wang, K. Acnet: Attention based network to exploit complementary features for rgbd semantic segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1440–1444. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Tolstikhin, I.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Keysers, D.; Uszkoreit, J.; Lucic, M.; et al. Mlp-mixer: An all-mlp architecture for vision. arXiv 2021, arXiv:2105.01601. [Google Scholar]
Author | Methods | Results |
---|---|---|
Mohantyet al. [24] (2016) | AlexNet and GoogleNet | 99.27% in AlexNet 99.34% in GoogleNet |
Sladojevic et al. [26] (2016) | Finetuned CNN architecture | 96.3% accuracy |
Ramcharan et al. [4] (2017) | Inception V3 based on GoogleNet | 93% accuracy |
Fuentes et al. [23] (2017) | Faster R-CNN | 83% accuracy |
Ferentinos et al. [25] (2018) | AlexNetOWTBn and VGG | 99.49% in AleXNetOWTBn 99.53% in VGG |
Ramacharan el al. [44] (2019) | Single-shot multibox (SSD) model with MobileNet detector and classifier | 80.6% accuracy on images 70.4% accuracy on video |
Geetharamani et al. [35] (2019) | Nine-layer deep CNN | 96.46% accuracy |
Chen et al. [2] (2020) | INC VGGN | 92% accuracy |
Li et al. [41] (2020) | Shallow CNN with SVM and RF | 94% accuracy |
Oyewola et al. [43] (2021) | Deep residual neural network (DRNN) | 96.75% accuracy |
Model | No. of Layer | Parameters (Million) | Size |
---|---|---|---|
AlexNet | 8 | 60 | - |
VGGNet-16 | 23 | 138 | 528 MB |
VGGNet-19 | 26 | 143 | 549 MB |
Inception-V1 | 27 | 7 | - |
Inception-V3 | 42 | 27 | 93 MB |
ResNet-152 | 152 | 50 | 132 MB |
ResNet-101 | 101 | 44 | 171 MB |
InceptionResNetV2 | 572 | 55 | 215 MB |
MobileNet-V1 | 28 | 4.2 | 16 MB |
MobileNet-V2 | 28 | 3.37 | 14 MB |
EfficientNet B0 | - | 5 | - |
Layer | Input | Filter (Size/Number) | Parameter |
---|---|---|---|
Input image | 299 × 299 × 3 | - | - |
Conv1 | Input image | 1 × 1/32 | 128 |
Conv2 | Conv1 | 1 × 1/64 | 2112 |
Conv3 | Conv1 | 1 × 1/64 | 2112 |
Conv4 | Conv3 | 3 × 3/96 | 55,392 |
Conv5 | Conv1 | 1 × 1/64 | 2112 |
Conv6 | Conv5 | 5 × 5/48 | 76,848 |
Avg. pooling | Conv1 | 3 × 3 | - |
Conv7 | Avg. pooling | 1 × 1/32 | 1056 |
Total | 139,760 |
Layer | Input | Filter (Size/Number) | Parameter |
---|---|---|---|
Input image | 299 × 299 × 3 | - | - |
Conv1 | Input image | 1 × 1/32 | 128 |
Conv2 | Conv1 | 1 × 1/64 | 2112 |
Conv3 | Conv1 | 1 × 1/64 | 2112 |
Depthwise separable conv1 | Conv3 | 3 × 3/96 | 6816 |
Conv4 | Conv1 | 1 × 1/64 | 2112 |
Depthwise separable conv2 | Conv4 | 5 × 5/48 | 4720 |
Avg. pooling | Conv1 | 3 × 3 | - |
Conv5 | Avg. pooling | 1 × 1/32 | 1056 |
Total | 19,056 |
Class | Plant Name | Disease Name | Causes Virus Name | Type of Disease | No. of Images |
---|---|---|---|---|---|
C1 | Apple | Healthy | - | - | 1645 |
C2 | Apple | Apple scab | Venturiainaequalis | Fungus | 630 |
C3 | Apple | Black rot | Botryosphaeriaobtusa | Fungus | 621 |
C4 | Apple | Cedar apple rust | Gymnosp-orangium | Fungus | 275 |
C5 | Blueberry | Healthy | - | - | 1502 |
C6 | Cherry | Healthy | - | - | 854 |
C7 | Cherry | Powdery mildew | Podosphaeraclandestina | Biotrophic Fungus | 1052 |
C8 | Corn | Healthy | - | - | 1162 |
C9 | Corn | Cercospora leaf spot | Cercosporazeae-maydis | Fungal | 513 |
C10 | Corn | Common rust | Puccinia sorghi | Fungus | 1192 |
C11 | Corn | Northern Leaf Blight | Exserohilumturcicum | Foliar | 985 |
C12 | Grape | Healthy | - | - | 423 |
C13 | Grape | Black rot | Guignardiabidwellii | Fungus | 1180 |
C14 | Grape | Esca (Black Measles) | Phaeomoniellachlamydospora | Fungus | 1383 |
C15 | Grape | Leaf blight (Isariopsis) | Pseudocercosporavitis | Fungus | 1076 |
C16 | Orange | Healthy | - | - | 5507 |
C17 | Peach | Healthy | - | - | 360 |
C18 | Peach | Bacterial spot | Xanthomonascampestris pv. pruni | Bacterial | 2297 |
C19 | Pepper/bell | Healthy | - | - | 1478 |
C20 | Pepper/bell | Bacterial spot | Xanthomonascampestris pv. | Bacterial | 997 |
C21 | Potato | Healthy | - | - | 152 |
C22 | Potato | Early blight | Alternaria solani | Fungal | 1000 |
C23 | Potato | Late blight | Phytophthorainfestans | Fungal | 1000 |
C24 | Raspberry | Healthy | - | - | 371 |
C25 | Soybean | Healthy | - | - | 5090 |
C26 | Squash | Powdery mildew | Podosphaeraxanthii | Fungal | 1835 |
Class | Plant Name | Disease Name | Causes Virus Name | Type of Disease | No. of Images |
---|---|---|---|---|---|
C27 | Strawberry | Healthy | - | - | 456 |
C28 | Strawberry | Leaf scorch | Diplocarpon earliana | Fungal | 1109 |
C29 | Tomato | Healthy | - | - | 1591 |
C30 | Tomato | Bacterial spot | Xanthomonas perforans | Bacterial | 2127 |
C31 | Tomato | Early blight | Alternaria˙sp. | Fungal | 1000 |
C32 | Tomato | Late blight | Phytophthora infestans | Fungal | 1909 |
C33 | Tomato | Leaf Mold | Lycopersicon | Fungal | 952 |
C34 | Tomato | Septoria leaf spot | Septoria lycopersici | Fungal | 1771 |
C35 | Tomato | Spider mites | Tetranychus spp. | Pest | 1676 |
C36 | Tomato | Target Spot | Corynespora cassiicola | Fungal | 1404 |
C37 | Tomato | Tomato mosaic virus | Tomato mosaic | Viral | 373 |
C38 | Tomato | Tomato Yellow Leaf | Begomovirus | Viral | 5357 |
Parameters | Value |
---|---|
Training epoch | 30–50 |
Batch size | 32–180 |
Dropout | 0.2–0.8 |
Learning rate | 0.01–0.0001 |
Model | Training Acc (%) | Testing Acc (%) | Loss | Epoch | Avg Time (s/Epoch) |
---|---|---|---|---|---|
AlexNet [25] | - | 98.64 | 0.0658 | 50 | 7034 |
VGG [25] | - | 98.87 | 0.0542 | 49 | 4208 |
NASNet [45] | - | 93.82 | - | 9 | - |
ResNet | - | 92.56 | - | - | - |
Deep CNN [26] | - | 96.3 | - | 100,000 | - |
Nine Layer CNN [35] | 97.87 | 96.46 | 0.2487 | 3000 | - |
CNN [54] | 99.99 | 97.1 | - | - | - |
InceptionV3 | 98.92 | 98.42 | 0.0129 | 50 | 1027 |
InceptionResNetV2 | 99.47 | 99.11 | 0.0241 | 50 | 836 |
MobileNetV2 | 97.17 | 97.02 | 0.0921 | 50 | 565 |
EfficientNetB0 | 99.78 | 99.56 | 0.0091 | 50 | 545 |
Dataset | Model | Image Type | Accuracy(%) | Loss | Epoch |
---|---|---|---|---|---|
Train-80% Test-20% | InceptionV3 | Color | 98.92 | 0.0392 | 50 |
Grayscale | 96.39 | 0.1391 | 50 | ||
Segmented | 98.71 | 0.0571 | 50 | ||
InceptionResNetV2 | Color | 99.47 | 0.0731 | 50 | |
Grayscale | 98.13 | 0.0972 | 50 | ||
Segmented | 99.39 | 0.0347 | 50 | ||
MobileNetV2 | Color | 97.17 | 0.0921 | 50 | |
Grayscale | 93.53 | 0.1152 | 50 | ||
Segmented | 99.69 | 0.0973 | 50 | ||
EfficientNetB0 | Color | 99.75 | 0.0137 | 50 | |
Grayscale | 98.83 | 0.0837 | 50 | ||
Segmented | 99.78 | 0.0091 | 50 | ||
Train-70% Test-30% | InceptionV3 | Color | 97.14 | 0.0931 | 45 |
Grayscale | 94.32 | 0.1937 | 45 | ||
Segmented | 96.85 | 0.1198 | 45 | ||
InceptionResNetV2 | Color | 99.11 | 0.0397 | 45 | |
Grayscale | 96.93 | 0.1078 | 45 | ||
Segmented | 98.87 | 0.0683 | 45 | ||
MobileNetV2 | Color | 96.87 | 0.0965 | 45 | |
Grayscale | 93.21 | 0.2145 | 45 | ||
Segmented | 96.69 | 0.0998 | 45 | ||
EfficientNetB0 | Color | 99.64 | 0.0341 | 45 | |
Grayscale | 98.43 | 0.0987 | 45 | ||
Segmented | 99.61 | 0.0653 | 45 | ||
Train-60% Test-40% | InceptionV3 | Color | 96.81 | 0.1012 | 30 |
Grayscale | 94.11 | 0.2241 | 30 | ||
Segmented | 96.42 | 0.1019 | 30 | ||
InceptionResNetV2 | Color | 98.97 | 0.0634 | 30 | |
Grayscale | 96.17 | 0.1134 | 30 | ||
Segmented | 98.45 | 0.0687 | 30 | ||
MobileNetV2 | Color | 96.54 | 0.1391 | 30 | |
Grayscale | 93.07 | 0.3112 | 30 | ||
Segmented | 96.37 | 0.1424 | 30 | ||
EfficientNetB0 | Color | 99.13 | 0.1139 | 30 | |
Grayscale | 98.17 | 0.1463 | 30 | ||
Segmented | 99.17 | 0.1127 | 30 |
Deep-Learning Model | Precision | Recall | F1-Score |
---|---|---|---|
InceptionV3 | 0.9836 | 0.9911 | 0.9873 |
InceptionResNetV2 | 0.9921 | 0.9961 | 0.9940 |
MobileNetV2 | 0.9732 | 0.9962 | 0.9845 |
EfficientNetB0 | 0.9953 | 0.9971 | 0.9961 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.M.; Maji, A.K.; Jasiński, M.; Leonowicz, Z.; Jasińska, E. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. Electronics 2021, 10, 1388. https://doi.org/10.3390/electronics10121388
Hassan SM, Maji AK, Jasiński M, Leonowicz Z, Jasińska E. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. Electronics. 2021; 10(12):1388. https://doi.org/10.3390/electronics10121388
Chicago/Turabian StyleHassan, Sk Mahmudul, Arnab Kumar Maji, Michał Jasiński, Zbigniew Leonowicz, and Elżbieta Jasińska. 2021. "Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach" Electronics 10, no. 12: 1388. https://doi.org/10.3390/electronics10121388