Electrochemical Behaviour of Real-Time Sensor for Determination Mercury in Cosmetic Products Based on PANI/MWCNTs/AuNPs/ITO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Instrumentations
2.3. Electrode Preparation and Modification
2.4. Experimental Setup
3. Results and Discussion
3.1. Precision Test
3.1.1. Limit of Detection (LOD)
3.1.2. Multiple Cycling, Reproducibility and Repeatability Test
3.1.3. Storage Stability Test
3.1.4. Interference Studies
3.2. Accuracy Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Cosmetics Market—Opportunities and Forecasts, 2014–2022. Available online: https://www.researchandmarkets.com/reports/3275915 (accessed on 26 December 2020).
- Neza, E.; Centini, M. Microbiologically contaminated and over-preserved cosmetic products according Rapex 2008–2014. Cosmetics 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Worthington, M.J.H.; Kucera, R.L.; Albuquerque, I.S.; Gibson, C.T.; Sibley, A.; Slattery, A.D.; Campbell, J.A.; Alboaiji, S.F.K.; Muller, K.A.; Young, J.; et al. Laying waste to mercury: Inexpensive sorbents made from sulfur and recycled cooking oils. Chem. A Eur. J. 2017, 2, 16219–16230. [Google Scholar] [CrossRef]
- Willner, M.R.; Vikesland, P.J. Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnology 2018, 16, 95. [Google Scholar] [CrossRef]
- Borowska, S.; Brzóska, M.M. Metals in cosmetics: implications for human health. J. Appl. Toxicol. 2015, 35, 551–572. [Google Scholar] [CrossRef]
- Jelić, D.; Antunović, V.; Đermanović, M. Arsenic and mercury content determination in commercial cosmetics products by atomic absorption spectroscopy. Qual. Life (Banja Luka) APEIRON 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Saadatzadeh, A.; Afzalan, S.; Zadehdabagh, R.; Tishezan, L.; Najafi, N.; Seyedtabib, M.; Noori, S.M.A. Determination of heavy metals (lead, cadmium, arsenic, and mercury) in authorized and unauthorized cosmetics. Cutan. Ocul. Toxicol. 2019, 38, 207–211. [Google Scholar] [CrossRef]
- Elhag, D.E.; Osman, H.; Dahab, A. Investigation of mercury content in cosmetic products by using direct mercury analyser. Am. J. Pharm. Tech. Res. 2015, 5, 205–212. [Google Scholar]
- Bridges, C.C.; Zalups, R.K. The aging kidney and the nephrotoxic effects of mercury. J. Toxicol. Environ. Health Part. B 2017, 20, 55–80. [Google Scholar] [CrossRef]
- Orr, S.; Bridges, C.C. Chronic kidney disease and exposure to nephrotoxic metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.T.; Chen, Y.; Buck, D.J.; Davis, R.L. Chronic inorganic mercury exposure induces sex-specific changes in central TNFα expression: Importance in autism? Neurosci. Lett. 2011, 504, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Wang, X.; Lin, C.-J.; Fu, X.; Zhang, H.; Shang, L.H.; Feng, X. Characteristics and potential sources of atmospheric mercury at a subtropical near-coastal site in East China. J. Geophys. Res. Atmos. 2015, 120, 8563–8574. [Google Scholar] [CrossRef]
- Sun, G.-F.; Hu, W.-T.; Yuan, Z.-H.; Zhang, B.-A.; Lu, H. Characteristics of mercury intoxication induced by skin-lightening products. Chin. Med. J. 2017, 130, 3003–3004. [Google Scholar] [CrossRef]
- Ori, M.R.; Larsen, J.B.; Shirazi, F. “Mazda” mercury poisoning in a toddler from home contamination due to skin-lightening cream. J. Pediatr. 2018, 196, 314–317.e1. [Google Scholar] [CrossRef]
- Hepp, N.M.; Mindak, W.R.; Gasper, J.W.; Thompson, C.B.; Barrows, J.N. Survey of cosmetics for arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel content. J. Cosmet. Sci. 2014, 65, 125. [Google Scholar]
- Sun, X.; Jia, M.; Guan, L.; Ji, J.; Zhang, Y.; Tang, L.; Li, Z. Multilayer graphene–gold nanocomposite modified stem-loop DNA biosensor for peanut allergen-Ara h1 detection. Food Chem. 2015, 172, 335–342. [Google Scholar] [CrossRef]
- Lumakso, F.A.; Riyanto, S.; Ahmad, S.; Ahmad, S.; Salleh, A.; Mohd, F.; Rohman, A. Application of chemometrics in combination with Fourier Transform Mid infrared spectroscopy for authentication of avocado oil. J. Food Pharm. Sci. 2015, 3, 12–17. [Google Scholar] [CrossRef]
- Tan, F.; Cong, L.; Saucedo, N.M.; Gao, J.; Li, X.; Mulchandani, A. An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg2+ ion in water samples. J. Hazard. Mater. 2016, 320, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Prasertboonyai, K.; Liawraungrath, B.; Pojanakaroon, T.; Liawraungrath, S. Mercury(II) determination in commercial cosmetics and local Thai traditional medicines by flow injection spectrophotometry. Int. J. Cosmet. Sci. 2015, 38, 68–76. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, B.; He, M.; Huang, T.; Hu, B. Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction. Talanta 2017, 171, 213–219. [Google Scholar] [CrossRef]
- Nasirudeen, M.B.; Amaechi, A.U. Spectrophotometric determination of heavy metals in cosmetics sourced from Kaduna Metropolis, Nigeria. Sci. World J. 2015, 10, 1–5. [Google Scholar]
- Mohammed, T.I.; Mohammed, E.; Bascombe, S. The evaluation of total mercury and arsenic in skin bleaching creams commonly used in Trinidad and Tobago and their potential risk to the people of the Caribbean. J. Public Health Res. 2017, 6, 1097. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.F.; Akhter, M.; Mazumder, B.; Ferdous, A.; Hossain, M.D.; Dafader, N.C.; Ahmed, F.T.; Kundu, S.K.; Taheri, T.; Ullah, A.K.M.A. Assessment of some heavy metals in selected cosmetics commonly used in Bangladesh and human health risk. J. Anal. Sci. Technol. 2019, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.J.; Khaleel, M.I. Determination of mercury level in skin whitening creams. Iraqi J. Market Res. Consum. Prot. 2016, 8, 378–385. [Google Scholar]
- Chansuvarn, W.; Tuntulani, T.; Imyim, A. Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TrAC Trends Anal. Chem. 2015, 65, 83–96. [Google Scholar] [CrossRef]
- Lee, J.S.; Han, M.S.; Mirkin, C.A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, D.; Lu, Y.; Yao, Y.; Li, S.; Liu, Q. Graphene oxide-based optical biosensor functionalized with peptides for explosive detection. Biosens. Bioelectron. 2015, 68, 494–499. [Google Scholar] [CrossRef]
- Zhang, W.; Du, Y.; Wang, M.L. Noninvasive glucose monitoring using saliva nano-biosensor. Sens. Bio-Sens. Res. 2015, 4, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Cheng, R.; Ng, R.; Huang, Y.; Duan, X. Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide. Nano Res. 2015, 8, 257–262. [Google Scholar] [CrossRef]
- Zheng, P.; Li, M.; Jurevic, R.; Cushing, S.K.; Liu, Y.; Wu, N. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver (I) and mercury (II) in human saliva. Nanoscale 2015, 7, 11005–11012. [Google Scholar] [CrossRef] [Green Version]
- Kandjani, A.E.; Sabri, Y.M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S.K. Detect, remove and reuse: A new paradigm in sensing and removal of Hg (II) from wastewater via SERS-Active ZnO/Ag nanoarrays. Environ. Sci. Technol. 2014, 49, 1578–1584. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Chen, Y.; Bi, N.; Zheng, X.; Qi, H.; Qin, M.; Liao, X.; Zhang, H.; Tian, Y. Determination of mercury(II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim. Acta 2012, 177, 341–348. [Google Scholar] [CrossRef]
- Suherman, A.L.; Tanner, E.E.; Compton, R.G. Recent developments in inorganic Hg2+ detection by voltammetry. TrAC Trends Anal. Chem. 2017, 94, 161–172. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, R.; Anoop, M.D.; Kulshrestha, V.; Srivastava, D.N.; Ray, K.; Kothari, S.L.; Awasthi, K.; Kumar, M. Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Appl. Phys. A 2018, 124, 737. [Google Scholar] [CrossRef]
- Fu, C.; Yu, H.; Su, L.; Liu, C.; Song, Y.; Wang, S.; Lin, Z.; Chen, F. A homogeneous electrochemical sensor for Hg2+ determination in environmental water based on the T–Hg2+–T structure and exonuclease III-assisted recycling amplification. Analyst 2018, 143, 2122–2127. [Google Scholar] [CrossRef]
- Tavakkoli, N.; Soltani, N.; Tabar, Z.K.; Jalali, M.R. Determination of dopamine using the indium tin oxide electrode modified with direct electrodeposition of gold–platinum nanoparticles. Chem. Pap. 2019, 73, 1377–1388. [Google Scholar] [CrossRef]
- Maity, D.; Kumar, R.T.R. Polyaniline anchored MWCNTs on fabric for high performance wearable ammonia sensor. ACS Sens. 2018, 3, 1822–1830. [Google Scholar] [CrossRef]
- Liu, T.; Chu, Z.; Jin, W. Electrochemical mercury biosensors based on advanced nanomaterials. J. Mater. Chem. B 2019, 7, 3620–3632. [Google Scholar] [CrossRef]
- Brainina, K.; Bukharinova, M.A.; Stozhko, N.Y.; Sokolkov, S.V.; Tarasov, A.V.; Vidrevich, M.B. Electrochemical sensor based on a carbon veil modified by phytosynthesized gold nanoparticles for determination of ascorbic acid. Sensors 2020, 20, 1800. [Google Scholar] [CrossRef] [Green Version]
- Devarayan, K.; Lei, D.; Kim, H.Y.; Kim, B.-S. Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor. Chem. Eng. J. 2015, 273, 603–609. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Awasthi, K. Polyaniline–carbon nanotube composites: Preparation methods, properties, and applications. Polym. Technol. Eng. 2018, 57, 70–97. [Google Scholar] [CrossRef]
- Bohari, N.A.; Siddiquee, S.; Saallah, S.; Misson, M.; Arshad, S.E. Optimization and analytical behavior of electrochemical sensors based on the modification of indium tin oxide (ITO) using PANI/MWCNTs/AuNPs for mercury detection. Sensors 2020, 20, 6502. [Google Scholar] [CrossRef]
- Su, Z.; Cheng, Y.; Li, C.; Xiong, Y.; Xiao, L.; Chen, S.; Qin, X. Dispersing gold nanoparticles on thiolated polyaniline-multiwalled carbon nanotubes for development of an indole-3-acetic acid amperometric immunosensor. Nanoscale Adv. 2019, 1, 3607–3613. [Google Scholar] [CrossRef] [Green Version]
- Maity, D.; Manoharan, M.; Kumar, R.T.R. Development of the PANI/MWCNT nanocomposite-based fluorescent sensor for selective detection of aqueous ammonia. ACS Omega 2020, 5, 8414–8422. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xiong, S.; Wang, X.; Chu, J.; Zhang, R.; Wu, B.; Gong, M.; Qu, M.; Li, Z.; Chen, Z. Water-dispersible polyaniline-carbon nanotubes composites with interface covalent bond and their enhanced electrochemical and electrochromic properties. Polym. Eng. Sci. 2020, 60, 2204–2213. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Du, X.; Li, Y.; Tang, W. A highly sensitive glucose sensor based on a gold nanoparticles/polyaniline/multi-walled carbon nanotubes composite modified glassy carbon electrode. New J. Chem. 2018, 42, 11944–11953. [Google Scholar] [CrossRef]
- Singh, N.; Ali, A.; Suresh, K.; Agrawal, V.V.; Rai, P.; Sharma, A.; Malhotra, B.D.; John, R. In-situ electrosynthesized nanostructured Mn3O4-polyaniline nanofibers- biointerface for endocrine disrupting chemical detection. Sens. Actuators B Chem. 2016, 236, 781–793. [Google Scholar] [CrossRef]
- Kulikova, T.; Porfireva, A.V.; Evtugyn, G.; Hianik, T. Electrochemical DNA sensors with layered polyaniline—DNA coating for detection of specific DNA interactions. Sensors 2019, 19, 469. [Google Scholar] [CrossRef] [Green Version]
- Grawe, G.F.; De Oliveira, T.R.; Narciso, E.D.A.; Moccelini, S.K.; Terezo, A.J.; Soares, M.A.; Castilho, M. Electrochemical biosensor for carbofuran pesticide based on esterases from Eupenicillium shearii FREI-39 endophytic fungus. Biosens. Bioelectron. 2015, 63, 407–413. [Google Scholar] [CrossRef]
- Shaikh, M.O.; Srikanth, B.; Zhu, P.-Y.; Chuang, C.-H. Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors 2019, 19, 3990. [Google Scholar] [CrossRef] [Green Version]
- Kuzin, Y.; Kappo, D.; Porfireva, A.V.; Shurpik, D.N.; Stoikov, I.I.; Evtugyn, G.; Hianik, T. Electrochemical DNA sensor based on carbon black—poly(neutral red) composite for detection of oxidative DNA damage. Sensors 2018, 18, 3489. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, H. The biomolecules of beauty: Biochemical pharmacology and immunotoxicology of cosmeceuticals. J. Immunoass. Immunochem. 2018, 40, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Arnau, E. Chemical compounds responsible for skin allergy to complex mixtures: How to identify them? Cosmetics 2019, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K.; Subramanian, K.; Murugan, K.; Dinakaran, K. Sensitive fluorescence detection of mercury(II) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots. Analyst 2016, 141, 6344–6352. [Google Scholar] [CrossRef]
- Ruan, Y.; Jiang, X.; Wu, L. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg2+ in aqueous solution. Analyst 2016, 141, 3313–3318. [Google Scholar] [CrossRef] [PubMed]
- Khoshbin, Z.; Housaindokht, M.R.; Verdian, A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal. Biochem. 2020, 597, 113689. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, Y.; Kang, X.; Liu, H.; Li, Y. Label-free colorimetric detection of divalent mercuric ions (Hg2+) based on T-Hg2+-T structure and exonuclease III dual-recycling and G-quadruplex-hemin DNAzyme amplification. Int. J. Environ. Anal. Chem. 2019, 100, 841–853. [Google Scholar] [CrossRef]
- Matlou, G.G.; Nkosi, D.; Pillay, K.; Arotiba, O. Electrochemical detection of Hg(II) in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid) on gold electrode. Sens. Bio-Sens. Res. 2016, 10, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Peng, Y.; Di, J. Electrochemical detection of Hg(II) ions based on nanoporous gold nanoparticles modified indium tin oxide electrode. Sens. Actuators B Chem. 2015, 220, 1086–1090. [Google Scholar] [CrossRef]
- Bui, M.-P.N.; Brockgreitens, J.; Ahmed, S.; Abbas, A. Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosens. Bioelectron. 2016, 85, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Kaur, B.; Srivastava, R.; Satpati, B. Ultratrace detection of toxic heavy metal ions found in water bodies using hydroxyapatite supported nanocrystalline ZSM-5 modified electrodes. New J. Chem. 2015, 39, 5137–5149. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kandasamy, G.; Upadhyay, R.K.; Bhattacharya, G.; Banerjee, D.; Maity, D.; Deshusses, M.A.; Roy, S.S. Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. 2017, 788, 91–98. [Google Scholar] [CrossRef]
- Zhou, S.-F.; Wang, J.-J.; Gan, L.; Han, X.-J.; Fan, H.-L.; Mei, L.-Y.; Huang, J.; Liu, Y.-Q. Individual and simultaneous electrochemical detection toward heavy metal ions based on L-cysteine modified mesoporous MnFe2O4 nanocrystal clusters. J. Alloys Compd. 2017, 721, 492–500. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Liu, J.; Song, J.-Y.; Li, J.; Huang, X.-J. Surface-electronic-state-modulated, single-crystalline (001) TiO2 nanosheets for sensitive electrochemical sensing of heavy-metal ions. Anal. Chem. 2017, 89, 3386–3394. [Google Scholar] [CrossRef]
- Lahrich, S.; Maanoun, B.; El Mhammedi, M. Electrochemical determination of mercury (II) using NaPb4−xCdx(PO4)3 (0 ≤ x ≤ 2) modified graphite electrode: Application in fish and seawater samples. Int. J. Environ. Anal. Chem. 2021, 101, 140–152. [Google Scholar] [CrossRef]
- Raril, C.; Manjunatha, J.G. Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. J. Anal. Sci. Technol. 2020, 11, 3. [Google Scholar] [CrossRef]
- Eksin, E.; Erdem, A.; Fafal, T.; Kıvçak, B. Eco-friendly sensors developed by herbal based silver nanoparticles for electrochemical detection of mercury (II) ion. Electroanalysis 2019, 31, 1075–1082. [Google Scholar] [CrossRef]
- Bernalte, E.; Arévalo, S.; Pérez-Taborda, J.; Wenk, J.; Estrela, P.; Avila, A.; Di Lorenzo, M. Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sens. Actuators B Chem. 2020, 307, 127620. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, J. Preparation of Ti3C2-PANI composite as sensor for electrochemical determination of mercury ions in water. Int. J. Electrochem. Sci. 2020, 15, 2295–2306. [Google Scholar] [CrossRef]
Regulatory Body | Limits for Cosmetics Other than Eye Area Products |
European Union | Banned |
Many African Nations | Banned |
Japan | Banned |
The United States and Drug Administration | <1 ppm |
Health Canada | ≤3 ppm |
Philippines Food and Drug Administration | ≤1 ppm |
Regulatory Body | Limits for eye area products |
European Union | ≤0.007% by weight |
The United States Food and Drug Administration | ≤65 ppm expressed as mercury (approximately 100 mg/kg expresses as phenylmercuric acetate or nitrate) |
Characteristic | Mean ± STD | RSD (%) |
---|---|---|
Multiple cycling | 1.52 × 10−4 ± 1.81 × 10−6 | 1.93 |
Reproducibility | 1.69 × 10−4 ± 2.31 × 10−6 | 2.82 |
Repeatability | 1.48 × 10−4 ± 3.54 × 10−6 | 1.24 |
Storage stability | 21 days, 95−99% | |
Interference study | p < 0.05, the hypothesis is accepted | |
LOD | 0.03 ppm | |
Spike recovery | 96.7−97.8% |
ANOVA | |||||||
---|---|---|---|---|---|---|---|
Current | |||||||
Sum of Squares | df | Mean Square | F | Sig. | |||
Between Groups | 20.918 | 7 | 2.988 | 2,038,564.012 | 0.000 | ||
Within Groups | 0.000 | 32 | 0.000 | ||||
Total | 20.918 | 39 | |||||
Post Hoc Tests | |||||||
(I) Selectivity | (J) Selectivity | Mean Difference (I–J) | Sig. | ||||
Mercury standard | Pyrophosphate | 0.0000031935 * | 0.000 | ||||
Papain | 0.0000032770 * | 0.000 | |||||
Oligosaccharides | 0.0000030656 * | 0.000 | |||||
Vitamin C | 0.0000033192 * | 0.000 | |||||
Mannitol | 0.0000029980 * | 0.000 | |||||
Collagen | 0.0000032811 * | 0.000 | |||||
Amino acid | 0.0000032811 * | 0.000 | |||||
Stearic acid | 0.0000032179 * | 0.000 | |||||
Benzene | 0.0000031829 * | 0.000 | |||||
Toulene | 0.0000030693 * | 0.000 | |||||
Cetyl Palmitate | 0.0000032873 * | 0.000 | |||||
Methylene glycol | 0.0000030573 * | 0.000 | |||||
Sodium chloride | 0.0000032563 * | 0.000 | |||||
Potassium cetyl sulphate | 0.0000032689 * | 0.000 | |||||
Tea Tree Oil | 0.0000034594 * | 0.000 |
Developed sensor | Added (ppm) | Found (ppm)Mean ± STD | Recovery (%) | RSD (%) |
0.03 ppm | 0.03 ± 0.38 | 96.6% | 0.43% | |
6 ppm | 5.7 ± 0.45 | 97.5% | 0.52% | |
10 ppm | 9.49 ± 0.43 | 97.3% | 0.64% |
References | Real Samples | Type of Sensor | LOD | Response Time |
---|---|---|---|---|
This study | Mercury | Electrochemical sensor | 0.08 ppm | 70 s |
[25] | Fish tissue, natural surface water, drinking water, and seawater. | Colorimetric | 0.5 ppb | 1–90 min |
[30] | Human saliva | SERS sensor | 2.3 ppt | - |
[54] | Water | Fluorescent | 1.02 ppb | |
[55] | Aqueous solution | UV-vis optical sensor | 1.4 ppb | - |
[56] | Human serum, water, and milk. | Fluorescent sensors | 1.33 ppt | 10 min |
[57] | Biological and environmental systems | Electrochemical sensor | 7 ppt | 500 s |
[58] | Hg(II) in water | Electrochemical sensor | 0.06 μM | 90 s |
[59] | Trace Hg(II) in different real samples with | Electrochemical sensor | 0.03 µg/L (0.15 nM) | 300 s |
[60] | Mercury in water using | Electrochemical sensor | 1.0 ppb | 600 s |
[61] | Water bodies | Electrochemical sensor | - | 100 s |
[62] | Water | Electrochemical sensor | 0.3 µM | 120 s |
[63] | Water | Electrochemical sensor | 0.208 µM | 150 s |
[64] | Water | Electrochemical sensor | 0.017 µM | 150 s |
[34] | Mercury (II) ions in water | Electrochemical sensor | 0.74 ppb | 2 min |
[65] | Fish and seawater samples | Electrochemical sensor | 1.35 × 10−8 mol/L | 60 s |
[66] | Water and biological samples | Electrochemical sensor | 6.6 μM | NA |
[67] | Tap water | Electrochemical sensor | 8.43 μM | 1 min |
[35] | Environment water | Electrochemical sensor | (1.02 nM) | 2 hours |
[68] | Amazon river | Electrochemical sensor | 5−300 μg/L | 60 s or 300 s (without stirring) |
[69] | Water | Electrochemical sensor | 0.017 μg/L | 500 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohari, N.A.; Siddiquee, S.; Saallah, S.; Misson, M.; Arshad, S.E. Electrochemical Behaviour of Real-Time Sensor for Determination Mercury in Cosmetic Products Based on PANI/MWCNTs/AuNPs/ITO. Cosmetics 2021, 8, 17. https://doi.org/10.3390/cosmetics8010017
Bohari NA, Siddiquee S, Saallah S, Misson M, Arshad SE. Electrochemical Behaviour of Real-Time Sensor for Determination Mercury in Cosmetic Products Based on PANI/MWCNTs/AuNPs/ITO. Cosmetics. 2021; 8(1):17. https://doi.org/10.3390/cosmetics8010017
Chicago/Turabian StyleBohari, Noor Aini, Shafiquzzaman Siddiquee, Suryani Saallah, Mailin Misson, and Sazmal Effendi Arshad. 2021. "Electrochemical Behaviour of Real-Time Sensor for Determination Mercury in Cosmetic Products Based on PANI/MWCNTs/AuNPs/ITO" Cosmetics 8, no. 1: 17. https://doi.org/10.3390/cosmetics8010017