In Vitro Hair Dermal Papilla Cells Induction by Fagraea berteroana, a Tree of the Marquesan Cosmetopoeia (French Polynesia)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material Collection, Extraction, and Fractionation
2.2. Cell Viability via the MTT Assay
2.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.4. Direct Immunofluorescence Staining
2.5. Statistical Analysis
2.6. UHPLC-MS/MS Analysis of F. berteroana Fraction FEAE-F0
3. Results and Discussion
3.1. Hair Follicle Dermal Papilla Cells (HDPCs) Proliferation Dynamic after Treatment with Extracts and Target Genes Regulation
3.2. Modulation of β-Catenin Production by FEAE-F0
3.3. Chemical Composition of F. berteroana FEAE-F0
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Butaud, J.-F. Synthèse Bibliographique Portant Sur Les Plantes Utilisées Dans La Cosmétopée de Polynésie Française; Cosmetic Valley: Chartres, France, 2013. [Google Scholar]
- Ansel, J.-L.; Ly, Q.; Butaud, J.-F.; Nicolas, M.; Herbette, G.; Peno-Mazzarino, L.; Lati, E.; Raharivelomanana, P. Activité anti-âge de l’extrait de Fitchia nutans, un ingrédient cosméticeutique d’un monoï traditionnel polynésien. Comptes Rendus Chim. 2016, 19, 1049–1055. [Google Scholar] [CrossRef]
- Jost, X.; Ansel, J.-L.; Lecellier, G.; Raharivelomanana, P.; Butaud, J.-F. Ethnobotanical Survey of Cosmetic Plants Used in Marquesas Islands (French Polynesia). J. Ethnobiol. Ethnomed. 2016, 12. [Google Scholar] [CrossRef]
- Martin, A. The Enlightenment in Paradise: Bougainville, Tahiti, and the Duty of Desire. Eighteenth Century Stud. 2007, 41, 203–216. [Google Scholar] [CrossRef]
- Gauthier, L. TAHITI—1904-1921; Les éditions du Pacifique: Paris, France, 1985. [Google Scholar]
- Hughes, K.; Ho, R.; Butaud, J.-F.; Filaire, E.; Ranouille, E.; Berthon, J.-Y.; Raharivelomanana, P. A Selection of Eleven Plants Used as Traditional Polynesian Cosmetics and Their Development Potential as Anti-Aging Ingredients, Hair Growth Promoters and Whitening Products. J. Ethnopharmacol. 2019, 245, 112159. [Google Scholar] [CrossRef] [PubMed]
- Handy, E.S.C. The Native Culture in the Marquesas; Bernice P. Bishop Museum: Honolulu, HI, USA, 1923. [Google Scholar]
- Pétard, P. Plantes Utiles de Polynésie Française et Raau Tahiti; Editions Haere Po No Tahiti: Papeete, French Polynesia, 1986; ISBN 978-2-904171-06-2. [Google Scholar]
- Whistler, W.A.; Elevitch, C.R. Fagraea berteroana (Pua kenikeni), Ver. 3.2.; Volume Species Profiles for Pacific Island Agroforestry; Elevitch, C.R., Ed.; Permanent Agriculture Resources (PAR): Honolulu, HI, USA, 2006. [Google Scholar]
- Hayashi, S.; Kameoka, H.; Hashimoto, S.; Furukawa, K.; Arai, T. Volatile Compounds of Fagraea berteriana Flowers. J. Essent. Oil Res. 1995, 7, 505–510. [Google Scholar] [CrossRef]
- Whistler, W.A. Plants in Samoan Culture: The Ethnobotany of Samoa; Isle Botanica: Honolulu, HI, USA, 2000; ISBN 978-0-9645426-6-2. [Google Scholar]
- Motley, T.J. The Ethnobotany of Fagraea Thunb. (Gentianaceae): The Timber of Malesia and the Scent of Polynesia. Econ. Bot. 2004, 58, 396–409. [Google Scholar] [CrossRef]
- Cuendet, M.; Hostettmann, K.; Potterat, O.; Dyatmiko, W. Iridoid Glucosides with Free Radical Scavenging Properties from Fagraea blumei. Helv. Chim. Acta 1997, 80, 1144–1152. [Google Scholar] [CrossRef]
- Cambie, R.C.; Lal, A.R.; Rickard, C.E.F.; Tanaka, N. Chemistry of Fijian Plants. V.: Constituents of Fagraea gracilipes A. GRAY. Chem. Pharm. Bull. 1990, 38, 1857–1861. [Google Scholar] [CrossRef]
- Ferdinal, N.; Alfajri, R.; Arifin, B. Isolation and Characterization of Scopoletin from The Bark of Fagraea ceilanica Thumb and Antioxidants Tests. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 126. [Google Scholar] [CrossRef][Green Version]
- Bangprapai, A.; Thongphasuk, P.; Songsak, T. Determination of Swertiamarin Content by Tlc-Densitometer in Fagraea fragrans Roxb. Leaves. Bull. Health Sci. Technol. 2016, 14, 13–18. [Google Scholar]
- Jonville, M.-C.; Capel, M.; Frédérich, M.; Angenot, L.; Dive, G.; Faure, R.; Azas, N.; Ollivier, E. Fagraldehyde, a Secoiridoid Isolated from Fagraea fragrans. J. Nat. Prod. 2008, 71, 2038–2040. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, E.; Suzumura, K.; Yamazaki, M. Pharmacologically Active Components of Todopon Puok (Fagraea racemosa), a Medicinal Plant from Borneo. Chem. Pharm. Bull. 1995, 43, 2200–2204. [Google Scholar] [CrossRef]
- Madmanang, S.; Cheyeng, N.; Heembenmad, S.; Mahabusarakam, W.; Saising, J.; Seeger, M.; Chusri, S.; Chakthong, S. Constituents of Fagraea fragrans with Antimycobacterial Activity in Combination with Erythromycin. J. Nat. Prod. 2016, 79, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Rattanaburi, S.; Kaikaew, K.; Watanapokasin, R.; Phongpaichit, S.; Mahabusarakamb, W. A New Lignan from the Stem Bark of Fagraea fragrans Roxb. Nat. Prod. Res. 2020, 1–6. [Google Scholar] [CrossRef]
- Wan, A.S.C.; Chow, Y.L. Alkaloids of Fagraea fragrans Roxb. J. Pharm. Pharmacol. 1964, 16, 484–486. [Google Scholar] [CrossRef] [PubMed]
- Basir, D.; Hanafi, M.; Saputra, A.; Wati, T. Free Solvent Amidation of Ursolic and Oleanolic Acids of Fagraea fragrans Fruits: Their P-388 Antitumor Activity. J. Phys. Conf. Ser. 2018, 1095, 012006. [Google Scholar] [CrossRef]
- Tamura, Y.; Takata, K.; Eguchi, A.; Kataoka, Y. In Vivo Monitoring of Hair Cycle Stages via Bioluminescence Imaging of Hair Follicle NG2 Cells. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Plikus, M.V. New Activators and Inhibitors in the Hair Cycle Clock: Targeting Stem Cells’ State of Competence. J. Investig. Dermatol. 2012, 132, 1321–1324. [Google Scholar] [CrossRef] [PubMed]
- Inui, S.; Itami, S. Molecular Basis of Androgenetic Alopecia: From Androgen to Paracrine Mediators through Dermal Papilla. J. Dermatol. Sci. 2011, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kwack, M.H.; Kang, B.M.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Minoxidil Activates β-catenin Pathway in Human Dermal Papilla Cells: A Possible Explanation for Its Anagen Prolongation Effect. J. Dermatol. Sci. 2011, 62, 154–159. [Google Scholar] [CrossRef]
- Zhang, H.; Su, Y.; Wang, J.; Gao, Y.; Yang, F.; Li, G.; Shi, Q. Ginsenoside Rb1 Promotes the Growth of Mink Hair Follicle via PI3K/AKT/GSK-3β Signaling Pathway. Life Sci. 2019, 229, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Dastan, M.; Najafzadeh, N.; Abedelahi, A.; Sarvi, M.; Niapour, A. Human Platelet Lysate versus Minoxidil Stimulates Hair Growth by Activating Anagen Promoting Signaling Pathways. Biomed. Pharmacother. 2016, 84, 979–986. [Google Scholar] [CrossRef]
- Oshimori, N.; Fuchs, E. Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation. Cell Stem Cell 2012, 10, 63–75. [Google Scholar] [CrossRef]
- Veltri, A.; Lang, C.; Lien, W.-H. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells: Wnt Signaling in Skin Development and Stem Cells. Stem Cells 2018, 36, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Hammond, L. QBI, The University of Queensland Australia Measuring Cell Fluorescence Using ImageJ—The Open Lab Book v1.0. Available online: https://theolb.readthedocs.io/en/latest/imaging/measuring-cell-fluorescence-using-imagej.html (accessed on 15 October 2020).
- MassBank of North America (MoNA)—PubChem Data Source. Available online: https://pubchem.ncbi.nlm.nih.gov/source/22043 (accessed on 20 August 2020).
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Inui, S.; Itami, S. Androgen Actions on the Human Hair Follicle: Perspectives. Exp. Dermatol. 2013, 22, 168–171. [Google Scholar] [CrossRef]
- Warner, D.R.; Greene, R.M.; Pisano, M.M. Cross-Talk between the TGFβ and Wnt Signaling Pathways in Murine Embryonic Maxillary Mesenchymal Cells. FEBS Lett. 2005, 579, 3539–3546. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.-Q.; Wu, Z.-B.; Chu, X.-Y.; Bi, Z.-G.; Fan, W.-X. An Investigation of Crosstalk between Wnt/β-catenin and Transforming Growth Factor-β Signaling in Androgenetic Alopecia. Medicine 2016, 95, e4297. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y. Targeting Wnt/β-catenin Pathway for Developing Therapies for Hair Loss. Int. J. Mol. Sci. 2020, 21, 4915. [Google Scholar] [CrossRef] [PubMed]
- Kimelman, D.; Xu, W. β -catenin Destruction Complex: Insights and Questions from a Structural Perspective. Oncogene 2006, 25, 7482–7491. [Google Scholar] [CrossRef] [PubMed]
- Stamos, J.L.; Weis, W.I. The β-catenin Destruction Complex. Cold Spring Harb. Perspect. Biol. 2013, 5. [Google Scholar] [CrossRef]
- Shtutman, M.; Zhurinsky, J.; Simcha, I.; Albanese, C.; D’Amico, M.; Pestell, R.; Ben-Ze’ev, A. The Cyclin D1 Gene Is a Target of the β-catenin/LEF-1 Pathway. Proc. Natl. Acad. Sci. USA 1999, 96, 5522–5527. [Google Scholar] [CrossRef]
- Schneider, J.A.; Logan, S.K. Revisiting the Role of Wnt/β-catenin Signaling in Prostate Cancer. Mol. Cell. Endocrinol. 2018, 462, 3–8. [Google Scholar] [CrossRef]
- Hughes, K.; Ho, R.; Greff, S.; Filaire, E.; Ranouille, E.; Chazaud, C.; Herbette, G.; Butaud, J.-F.; Berthon, J.-Y.; Raharivelomanana, P. Hair Growth Activity of Three Plants of the Polynesian Cosmetopoeia and Their Regulatory Effect on Dermal Papilla Cells. Molecules 2020, 25, 4360. [Google Scholar] [CrossRef] [PubMed]
- Suciati, S.; Lambert, L.K.; Ross, B.P.; Deseo, M.A.; Garson, M.J. Phytochemical Study of Fagraea Spp. Uncovers a New Terpene Alkaloid with Anti-Inflammatory Properties. Aust. J. Chem. 2011, 64, 489. [Google Scholar] [CrossRef]
- Villasenor, I. Bioactivities of Iridoids. AIAAMC 2007, 6, 307–314. [Google Scholar] [CrossRef]
- Viljoen, A.; Mncwangi, N.; Vermaak, I. Anti-Inflammatory Iridoids of Botanical Origin. CMC 2012, 19, 2104–2127. [Google Scholar] [CrossRef]
- Li, W.; Man, X.-Y.; Li, C.-M.; Chen, J.-Q.; Zhou, J.; Cai, S.-Q.; Lu, Z.-F.; Zheng, M. VEGF Induces Proliferation of Human Hair Follicle Dermal Papilla Cells through VEGFR-2-Mediated Activation of ERK. Exp. Cell Res. 2012, 318, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Lachgar; Charveron; Gall; Bonafe Minoxidil Upregulates the Expression of Vascular Endothelial Growth Factor in Human Hair Dermal Papilla Cells. Br. J. Dermatol. 1998, 138, 407–411. [CrossRef]
- Messenger, A.G.; Rundegren, J. Minoxidil: Mechanisms of Action on Hair Growth. Br. J. Dermatol. 2004, 150, 186–194. [Google Scholar] [CrossRef]
- Shumbe, L.; Bott, R.; Havaux, M. Dihydroactinidiolide, a High Light-Induced β-Carotene Derivative That Can Regulate Gene Expression and Photoacclimation in Arabidopsis. Mol. Plant 2014, 7, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- Marin, C.L.R. Terpene Extract for the Treatment of Hair Loss 2013. Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2013174854 (accessed on 31 January 2021).
- Takahashi, H.; Hara, S.c/oK.K.Y.C.K.; Matsui, R.c/oK.K.Y.C.K. Diterpenes and Flavonoids as 5-Alpha-Reductase Inhibitors 1996. Available online: https://patents.google.com/patent/EP0747048A2/en (accessed on 31 January 2021).
Gene Names | Forward Primer | Reverse Primer |
---|---|---|
BMP2 | 5′-CCC-ACT-TGG-AGG-AGA-AAC-AA-3′ | 5′-GCT-GTT-TGT-GTT-TGG-CTT-GA-3′ |
CALM2 | 5′-GGG-AAC-ATC-TGG-GTT-ATG-CC-3′ | 5′-GAC-TGT-CCA-TAG-TCC-ACG-CA-3′ |
CCND1 | 5′-AAC-TAC-CTG-GAC-CGC-TTC-CT-3′ | 5′-CCA-CTT-GAG-CTT-GTT-CAC-CA-3′ |
GAPDH | 5′-CCA-GCA-AGA-GCA-CAA-GAG-GA-3′ | 5′-TGG-TTG-AGC-ACA-GGG-TAC-TT-3′ |
PUM1 | 5′-GGT-GCC-CTT-GTA-GTG-AAT-GC-3′ | 5′-TGT-TGT-TCC-AGC-AAG-ACC-AC-3′ |
TGFB1 | 5′-CTG-GCG-ATA-CCT-CAG-CAA-CC-3′ | 5′-CGG-TAG-TGA-ACC-CGT-TGA-TGT-C-3′ |
Positive Mode | Negative Mode | UV (nm) | Database Search (21/01/2021) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Peak No. | Rt (min) | [M + H]+ | [M + Na]+ | Product Ions (MS/MS, 20 and 40 eV) | [M − H]− | Product Ions (MS/MS) | Metlin | MetFrag (vs. Pubchem) | Molecular Formula | Compound Annotation | |
1 | 7.67 | 171.1019 | 193.084 | 20 eV: 57 (100, C4H9+), 83 (10, C5H7O+), 111 (19, C7H11O+), 125 (4, C8H13O+) 40 eV: 55 (21, C4H7+), 57 (100, C4H9+), 59 (10, C3H7O+), 97 (17, -), 145 (10, -) | - | - | 224 | 3 entries, no experimental MS2 spectra | 5240 candidates | C9H14O3 | boonein |
2 | 7.82 | 181.0861 | 203.0681 | 20 eV: 57 (100, C3H5O+), 117 (6, C9H9+), 131 (4, -), 151 (3, C8H7O3+) 40 eV: 57 (100, C3H5O+), 91 (57, C7H7+), 109 (36, -), 115 (50, C9H7+), 127 (21, -), 152 (20, -) | - | - | 225, 274 | 21 entries, 7 experimental MS2 spectra, no correspondence | 3909 candidates | C10H12O3 | - |
3 | 8.22 | 153.0915 | 175.0734 | 20 eV: 67 (46, C5H7+), 79 (85, C6H7+), 91 (74, C7H7+), 105 (25, C8H9+), 107 (100, C8H11+) 40 eV: 53 (28, C4H5+), 55 (22, C4H7+), 65 (71, C5H5+), 67 (27, C5H7+), 79 (44, C6H7+), 91 (100, C7H7+) | - | - | 226, 279 | 13 entries, 2 experimental MS2 spectra, no correspondence | 3668 candidates | C9H12O2 | - |
4 | 8.57 | 213.1454 | - | 20 eV: - 40 eV: 55 (39, C4H7+), 57 (28, -), 91 (67, -), 91 (64, C7H7+), 95 (41, C6H7O+), 145 (100, -) | - | - | 226, 279 | 13 entries, 2 experimental MS2 spectra, no correspondence | 4703 candidates | C12H20O3 | - |
5 | 8.83 | - | - | - | - | - | 226, 279 | - | - | ||
6 | 9.00 | 181.1223 | 203.1044 | 20 eV: 79 (21, C6H7+), 81 (29, C6H9+), 93 (64, C7H9+), 95 (56, C7H11+), 107 (93, C8H11+), 121 (42, C9H13+), 135 (84, C10H15+), 145 (22, C11H13+), 163 (58, C11H15O+), 181 (100, C11H17O2+) 40 eV: 53 (33, C4H5+), 55 (40, C4H7+), 67 (31, C5H7+), 69 (17, C5H9+), 79 (69, C6H7+), 91 (100, C7H7+), 93 (47, C7H9+), 105 (47, C8H9+), 107 (24, C8H11+) | - | - | 226, 284 | 12 entries, 1 experimental MS2 spectrum hypothetical match Metlin ID 90552 | 6090 candidates | C11H16O2 | - |
7 | 9.36 | - | - | - | 217.0874 | 20 eV: 117.0346 (33, C8H5O−), 119.0503 (100, C8H7O−), 145.0296 (51, C9H5O2−), 163.0402 (28, C9H7O3−), 217.0873 (9, C13H13O3−) 40 eV: 89 (3, C7H5−), 93 (5, C6H5O−), 117 (100, C8H5O−), 119 (38, C8H7O−), 145 (5, C9H5O2−) | 227 | 7 entries, 1 experimental MS2 spectrum, no correspondence | 5081 candidates | C13H14O3 | - |
8 | 9.45 | 213.1484 | 235.1306 | 20 eV: 57 (100, C4H9+), 81 (4, C6H9+), 83 (5, C6H11+), 109 (5, C7H9O+), 127 (48, C7H11O2+), 139 (6, C8H11O2+), 195 (10, C12H19O2+) 40 eV: 57 (100, C4H9+), 79 (8, C6H7+), 81 (14, C6H9+), 109 (3, C7H9O+), 127 (8, C7H11O2+) | 211.1344 (low) | - | 227 | 13 entries, 2 experimental MS2 spectra, no correspondence | 4703 candidates | C12H20O3 | - |
9 | 9.52 | 223.0965 | 247.0745 | 20 eV: 121 (2, C7H5O2+), 149 (100, C8H5O3+), 177 (7, C10H9O3+) 40 eV: 65 (80, C5H5+), 93 (19, C6H5O+), 111 (10, C6H7O2+), 121 (72, C7H5O2+), 149 (100, C8H5O3+), 167 (4, C8H7O4+) | - | - | 228, 277 | 13 entries, 1 experimental MS2 spectrum, no correspondence | 6105 candidates | C12H14O4 | - |
10 | 9.80 | - | - | - | 195.1393 | 20 eV: 109 (8, C7H9O−), 111 (6, C7H11O−), 125 (3, C8H13O−), 138 (12, C8H10O2−), 167 (16, C11H19O−), 179 (24, C11H15O2−), 195 (100, C12H19O2−) 40 eV: 53 (100, C3HO−), 109 (11, C7H9O−), 122 (14, C7H6O2−), 138 (14, C8H10O2−) | 227 | 59 entries, 1 experimental MS2 spectrum, no correspondence | 6334 candidates | C12H20O2 | - |
11 | 10.50 | 181.1224 | 203.1045 | 20 eV: 93 (53, C7H9+), 95 (28, C6H7O+), 97 (25, C6H9O+), 107 (32, C8H11+), 111 (17, C7H11O+), 125 (100, C7H9O2+), 135 (37, C10H15+), 138 (22, C8H10O2+), 163 (28, C11H15O+), 181 (94, C11H17O2+) 40 eV: 53 (50, C4H5+), 55 (40, C4H7+), 65 (20, C5H5+), 67 (44, C5H7+), 77 (19, C6H5+), 79 (38, C6H7+), 81 (12, C6H9+), 91 (100, C7H7+), 93 (42, C7H9+), 95 (70, C6H7O+), 97 (22, C6H9O+), 105 (21, C8H9+), 109 (20, C7H9O+), 123 (11, C7H7O2+), 125 (12, C7H9O2+) | - | - | 228, 276 | 12 entries, 1 experimental MS2 spectrum no close match | 6090 candidates | C11H16O2 | - |
12 | 10.98 | 209.1538 | 231.1357 | 20 eV: - 40 eV: 53 (10, C4H5+), 55 (36, C4H7+), 57 (100, C4H9+), 59 (30, C3H7O+), 65 (7, C5H5+), 67 (56, C5H7+), 69 (15, C5H9+), 77 (5, C6H5+), 79 (42, C6H7+), 81 (31, C6H9+), 83 (4, C5H7O+, 5, C6H11+), 91 (49, C7H7+), 93 (31, C7H9+), 95 (9, C6H7O+, 15, C7H11+), 97 (12, C6H9O+), 103 (6, C8H7+), 105 (46, C8H9+), 107 (37, C8H11+), 109 (8, C7H9O+), 111 (4, C7H11O+), 119 (18, C9H11+), 121 (17, C9H13+), 123 (3, C7H7O2+, C8H11O+, C9H15+), 133 (10, C10H13+), 135 (8, C10H15+), 151 (6, C10H15O+), 179 (11, C11H15O2+), 194 (4, C12H18O2+) | - | - | 228, 292 | 13 entries, no experimental MS2 spectra | 6905 candidates | C13H20O2 | - |
13 | 11.45 | 279.1594 | 301.1414 | 20 eV: 57 (10, C4H9+), 109 (2, C8H13+), 149 (100, C8H5O3+), 167 (5, C8H7O4+), 209 (2, C10H9O5+) 40 eV: 57 (19, C4H9+), 121 (23, C7H5O2+), 149 (100, C8H5O3+), 167 (5, C8H7O4+) | - | - | 227, 279 | 4 entries, 1 experimental MS2 spectrum, no correspondence | 5392 candidates | C16H22O4 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hughes, K.; Ho, R.; Chazaud, C.; Hermitte, S.; Greff, S.; Butaud, J.-F.; Filaire, E.; Ranouille, E.; Berthon, J.-Y.; Raharivelomanana, P. In Vitro Hair Dermal Papilla Cells Induction by Fagraea berteroana, a Tree of the Marquesan Cosmetopoeia (French Polynesia). Cosmetics 2021, 8, 13. https://doi.org/10.3390/cosmetics8010013
Hughes K, Ho R, Chazaud C, Hermitte S, Greff S, Butaud J-F, Filaire E, Ranouille E, Berthon J-Y, Raharivelomanana P. In Vitro Hair Dermal Papilla Cells Induction by Fagraea berteroana, a Tree of the Marquesan Cosmetopoeia (French Polynesia). Cosmetics. 2021; 8(1):13. https://doi.org/10.3390/cosmetics8010013
Chicago/Turabian StyleHughes, Kristelle, Raimana Ho, Claire Chazaud, Stéphanie Hermitte, Stéphane Greff, Jean-François Butaud, Edith Filaire, Edwige Ranouille, Jean-Yves Berthon, and Phila Raharivelomanana. 2021. "In Vitro Hair Dermal Papilla Cells Induction by Fagraea berteroana, a Tree of the Marquesan Cosmetopoeia (French Polynesia)" Cosmetics 8, no. 1: 13. https://doi.org/10.3390/cosmetics8010013
APA StyleHughes, K., Ho, R., Chazaud, C., Hermitte, S., Greff, S., Butaud, J.-F., Filaire, E., Ranouille, E., Berthon, J.-Y., & Raharivelomanana, P. (2021). In Vitro Hair Dermal Papilla Cells Induction by Fagraea berteroana, a Tree of the Marquesan Cosmetopoeia (French Polynesia). Cosmetics, 8(1), 13. https://doi.org/10.3390/cosmetics8010013