Hair Strengthening Evaluation of Anisotropic Osmolite Solutions (Inositol + Arginine): Cross-Talk between Dermal Papilla Fibroblast and Keratinocytes of the Outer Root Sheath Using a µHair Follicle 3D Model
Abstract
:1. Introduction
- -
- Protection from external environment.
- -
- Skin repairing during re-epithelization.
- -
- Dispersion of sweat and sweat gland products (e.g., pheromones).
- -
- Dispersion of sebum.
- -
- Action as touch receptor.
2. Experimental Design
3. Materials and Methods
3.1. In Silico
3.2. In Vitro
3.3. Ex Vivo
3.3.1. Irradiation
3.3.2. Treatment Administration
3.3.3. Protein Extraction and Bradford analysis
3.3.4. Data Treatment
3.4. In Vivo
3.4.1. Pull Test
- -
- Temporal area: located 3 cm above the back auricle-line;
- -
- Frontal area: located on a median line, 4 cm from the frontal hairline;
- -
- Occipital area: located on a median longitudinal line, 4 cm from the back hairline.
3.4.2. Diameter of the Hair
3.4.3. Subjective Evaluation
3.4.4. Mathematical Elaboration
4. Results and Discussion
4.1. In Silico
4.2. In Vitro
4.2.1. Histo-Morphological Analysis
4.2.2. Immunostaining
4.3. Ex Vivo
Protein Degradation Analysis
4.4. In Vivo
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Chuong, C.M.; Landes, R.G. Molecular Basis of Epithelial Appendage Morphogenesis; Landes Bioscience: Austin, TX, USA, 1998. [Google Scholar]
- Hardy, M.H. The secret life of the hair follicle. Trends Genet. 1992, 8, 55–61. [Google Scholar] [CrossRef]
- Cotsarelis, G.; Sun, T.T.; Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990, 61, 1329–1337. [Google Scholar] [CrossRef]
- Lyle, S.; Christofidou-Solomidou, M.; Liu, Y.; Elder, D.E.; Albelda, S.; Cotsarelis, G. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 1998, 111, 3179–3188. [Google Scholar] [PubMed]
- Paus, R.; Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 1999, 341, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Rendl, M.; Lewis, L.; Fuchs, E. Molecular dissection of mesenchymalepithelial Interactions in the hair follicle. PLoS Biol. 2005, 3, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higginsa, C.A.; Chen, J.C.; Cerise, J.E.; Jahoda, C.A.B.; Christiano, A.M. Microenvironmental reprogramming by threedimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc. Natl. Acad. Sci. USA 2013, 110, 19679–19688. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Kim, M.S.; Chung, B.M.; Leahy, D.J.; Coulombe, P.A. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat. Struct. Mol. Biol. 2012, 19, 707–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; Van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaje, J.G.E.M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidelines for the Evaluation of the Efficacy of Cosmetic Products—COLIPA Guidelines; The European Coemetics Association: Auderghem, Belgium, 2008.
- Piérard, G.E.; Piérard-Franchimont, C.; Marks, R.; Elsner, P. EEMCO guidance for the assessment of hair shedding and alopecia. Skin Pharmacol. Physiol. 2004, 17, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Pariser, D.M.; Caserio, R.J.; Eaglestein, W.H. Techniques for Diagnosing Skin and Hair Disease; Thieme: New York, NY, USA, 1986. [Google Scholar]
- Van Neste, D.; Lachapelle, J.M.; Antoine, J.L. Trends in Human Hair Growth and Alopecia Research; Springer: Berlin, Germany, 1989. [Google Scholar]
- Wong, P.; Coulombe, P.A. Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J. Cell Biol. 2003, 163, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojcik, S.M.; Longley, M.A.; Roop, D.R. Discovery of a novel murine keratin 6 (K6) isoform explains the absence of hair and nail defects in mice deficient for K6a and K6b. J. Cell Biol. 2001, 154, 619–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahoda, C.A.; Mauger, A.; Bard, S.; Sengel, P. Changes in fibronectin, laminin and type IV collagen distribution relate to basement membrane restructuring during the rat vibrissa follicle hair growth cycle. J Anat. 1992, 181, 47–60. [Google Scholar] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baratto, G.; Caviola, E.; Meloni, M.; Lionetti, N.; Bonfigli, A.; Sironi, M.; Pieraccini, S.; Oliver, M.; Coderch, L.; Rigano, L. Hair Strengthening Evaluation of Anisotropic Osmolite Solutions (Inositol + Arginine): Cross-Talk between Dermal Papilla Fibroblast and Keratinocytes of the Outer Root Sheath Using a µHair Follicle 3D Model. Cosmetics 2018, 5, 56. https://doi.org/10.3390/cosmetics5040056
Baratto G, Caviola E, Meloni M, Lionetti N, Bonfigli A, Sironi M, Pieraccini S, Oliver M, Coderch L, Rigano L. Hair Strengthening Evaluation of Anisotropic Osmolite Solutions (Inositol + Arginine): Cross-Talk between Dermal Papilla Fibroblast and Keratinocytes of the Outer Root Sheath Using a µHair Follicle 3D Model. Cosmetics. 2018; 5(4):56. https://doi.org/10.3390/cosmetics5040056
Chicago/Turabian StyleBaratto, Gianni, Elisa Caviola, Marisa Meloni, Nicola Lionetti, Adriana Bonfigli, Maurizio Sironi, Stefano Pieraccini, Marc Oliver, Luisa Coderch, and Luigi Rigano. 2018. "Hair Strengthening Evaluation of Anisotropic Osmolite Solutions (Inositol + Arginine): Cross-Talk between Dermal Papilla Fibroblast and Keratinocytes of the Outer Root Sheath Using a µHair Follicle 3D Model" Cosmetics 5, no. 4: 56. https://doi.org/10.3390/cosmetics5040056