Revolutionizing Cosmetic Ingredients: Harnessing the Power of Antioxidants, Probiotics, Plant Extracts, and Peptides in Personal and Skin Care Products
Abstract
:1. Introduction
2. Natural Extracts
3. Peptides
4. Antioxidants
5. Probiotics
6. Recent Advances in Skincare and Personal Care
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.S.; Cary, J.H.; Maibach, H.I. Science Behind Cosmetics and Skin Care. In Nanocosmetics: From Ideas to Products; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–15. [Google Scholar] [CrossRef]
- Statista. Revenue of the Cosmetics Industry Worldwide 2018–2028. 2024. Available online: https://www.statista.com/forecasts/1272313/worldwide-revenue-cosmetics-market-by-segment (accessed on 2 June 2024).
- Blaak, J.; Staib, P. An updated review on efficacy and benefits of sweet almond, evening primrose and jojoba oils in skin care applications. Int. J. Cosmet. Sci. 2021, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Łopaciuk, A.; Łoboda, M. Global Beauty Industry Trends in the 21st Century. In Proceedings of the Management, Knowledge and Learning International Conference, Zadar, Croatia, 19–21 June 2013; pp. 1079–1087. [Google Scholar]
- Secară, O.M.; Sasu, D.V. The impact of globalization in the industry of cosmetics. Ann. Fac. Econ. 2013, 1, 681–691. [Google Scholar]
- Eaglstein, W.H. The FDA for Doctors; Springer Nature: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Ngoc, L.T.N.; Moon, J.-Y.; Lee, Y.-C. Insights into Bioactive Peptides in Cosmetics. Cosmetics 2023, 10, 111. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.; Hernández-Mendoza, A.; González-Córdova, A.; Vallejo-Cordoba, B.; Liceaga, A. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019, 122, 170170. [Google Scholar] [CrossRef]
- Soto, M.L.; Parada, M.; Falqué, E.; Domínguez, H. Personal-Care Products Formulated with Natural Antioxidant Extracts. Cosmetics 2018, 5, 13. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Sousa Lobo, J.M. Main Benefits and Applicability of Plant Extracts in Skin Care Products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef]
- Michalak, M. Plant Extracts as Skin Care and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef]
- Kumar, V. Perspective of Natural Products in Skincare. Pharm. Pharmacol. Int. J. 2016, 4, 1–3. [Google Scholar] [CrossRef]
- Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of Tea (Camellia sinensis) and Its Active Constituents in Cosmetics. Molecules 2019, 24, 4277. [Google Scholar] [CrossRef]
- Namal Senanayake, S.P.J. Green tea extract: Chemistry, antioxidant properties and food applications—A review. J. Funct. Foods 2013, 5, 1529–1541. [Google Scholar] [CrossRef]
- Banerjee, A.; Pavane, M.S.; Banu, L.H.; Gopikar, A.S.R.; Elizabeth, K.R.; Pathak, S. Traditional medicine for aging-related disorders: Implications for drug discovery. In Stem Cells and Aging [Internet]; Elsevier: Amsterdam, The Netherlands, 2021; pp. 281–297. [Google Scholar] [CrossRef]
- Dai, Y.-L.; Li, Y.; Wang, Q.; Niu, F.-J.; Li, K.-W.; Wang, Y.-Y.; Wang, J.; Zhou, C.-Z.; Gao, L.-N. Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules 2022, 28, 133. [Google Scholar] [CrossRef] [PubMed]
- El Mihyaoui, A.; da Silva, J.C.G.E.; Charfi, S.; Castillo, M.E.C.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A Review of Ethnomedicinal Use, Phytochemistry and Pharmacological Uses. Life 2022, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- Serim, E.; Ceylan, B.; Tekkeli, S.E.K. Determination of Apigenin in Cosmetics Containing Chamomile by High-Performance Liquid Chromatography with Ultraviolet Detection (HPLC-UV). Anal. Lett. 2022, 56, 2113–2122. [Google Scholar] [CrossRef]
- Klimaszewska, E.; Seweryn, A.; Małysa, A.; Zięba, M.; Lipińska, J. The effect of chamomile extract obtained in supercritical carbon dioxide conditions on physicochemical and usable properties of pharmaceutical ointments. Pharm. Dev. Technol. 2018, 23, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Mustafakulovna, M.M.; Kurbonalievna, S.M. Pharmacological action of the components of chamomile pharmacy and its use in cosmetics. World Bull. Public Health 2022, 17, 90–93. [Google Scholar]
- Svitina, H.; Swanepoel, R.; Rossouw, J.; Netshimbupfe, H.; Gouws, C.; Hamman, J. Treatment of Skin Disorders with Aloe Materials. Curr. Pharm. Des. 2019, 25, 2208–2240. [Google Scholar] [CrossRef]
- Kahramanoğlu, I.; Chen, C.; Chen, J.; Wan, C. Chemical constituents, antimicrobial activity and food preservative characteristics of aloe vera gel. Agronomy 2019, 9, 831. [Google Scholar] [CrossRef]
- Hekmatpou, D.; Mehrabi, F.; Rahzani, K.; Aminiyan, A. The Effect of Aloe Vera Clinical Trials on Prevention and Healing of Skin Wound: A Systematic Review. Iran. J. Med. Sci. 2019, 44, 1–9. [Google Scholar]
- Saleem, A.; Naureen, I.; Naeem, M.; Murad, H.S.; Maqsood, S.; Tasleem, G. Aloe Vera Gel Effect on Skin and Pharmacological Properties. Sch. Int. J. Anat. Physiol. 2022, 5, 1–8. [Google Scholar] [CrossRef]
- Nicolaus, C.; Junghanns, S.; Hartmann, A.; Murillo, R.; Ganzera, M.; Merfort, I. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J. Ethnopharmacol. 2017, 196, 94–103. [Google Scholar] [CrossRef]
- Silva, D.; Ferreira, M.S.; Sousa-Lobo, J.M.; Cruz, M.T.; Almeida, I.F. Anti-inflammatory activity of Calendula officinalis L. Flower extract. Cosmetics 2021, 8, 31. [Google Scholar] [CrossRef]
- Givol, O.; Kornhaber, R.; Visentin, D.; Cleary, M.; Haik, J.; Harats, M. A systematic review of Calendula officinalis extract for wound healing. Wound Repair Regen. 2019, 27, 548–561. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Jang, G.Y.; Ji, Y.-J.; Lee, J.H.; Choi, S.J.; Hyun, T.K.; Kim, H.D. Antioxidant and Anti-Melanogenic Activities of Heat-Treated Licorice (Wongam, Glycyrrhiza glabra × G. uralensis) Extract. Curr. Issues Mol. Biol. 2021, 43, 1171–1187. [Google Scholar] [CrossRef] [PubMed]
- Ciganović, P.; Jakimiuk, K.; Tomczyk, M.; Končić, M.Z. Glycerolic Licorice Extracts as Active Cosmeceutical Ingredients: Extraction Optimization, Chemical Characterization, and Biological Activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef]
- Mainkar, A.; Mukherjee, D.; Tabrej, A.; Dhawal, P.; Vaze, K. A Glabridin-Enriched Licorice Extract Demonstrates Multifunction Skin Benefits In Vitro. SOFW J. 2022, 148, 34. [Google Scholar]
- Cerulli, A.; Masullo, M.; Montoro, P.; Piacente, S. Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and Their Constituents as Active Cosmeceutical Ingredients. Cosmetics 2022, 9, 7. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, J.; You, J.; Li, J.; Ma, H.; Chen, X. Factors influencing cultivated ginseng (Panax ginseng C. A. Meyer) bioactive compounds. PLoS ONE 2019, 14, e0223763. [Google Scholar] [CrossRef]
- Liu, H.; Lu, X.; Hu, Y.; Fan, X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol. Res. 2020, 161, 105263. [Google Scholar] [CrossRef]
- Truong, V.-L.; Jeong, W.-S. Red ginseng (Panax ginseng Meyer) oil: A comprehensive review of extraction technologies, chemical composition, health benefits, molecular mechanisms, and safety. J. Ginseng Res. 2021, 46, 214–224. [Google Scholar] [CrossRef]
- Karmazyn, M.; Gan, X.T. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol. Cell. Biochem. 2021, 476, 333–347. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, H.R.; Cha, S.Y.; Lee, S.H.; Jo, J.W.; Go, J.N.; Lee, K.H.; Lee, S.Y.; Shin, S.S. Effect of red ginseng NaturalGEL on skin aging. J. Ginseng Res. 2020, 44, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Liu, X.; Li, J.; Bao, T.; Yi, F. Bibliometric analysis of the effects of ginseng on skin. J. Cosmet. Dermatol. 2021, 21, 99–107. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.-A.; Son, D.; Park, D.; Jung, E. Anti-Skin-Aging Activity of a Standardized Extract from Panax ginseng Leaves In Vitro and In Human Volunteer. Cosmetics 2017, 4, 18. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Taha, A.A.; Ying, Y.; Li, X.; Chen, X.; Ma, C. Subcritical water extraction of bioactive components from ginseng roots (Panax ginseng C.A. Mey). Ind. Crops Prod. 2018, 117, 118–127. [Google Scholar]
- Varma, S.R.; Sivaprakasam, T.O.; Arumugam, I.; Dilip, N.; Raghuraman, M.; Pavan, K.; Rafiq, M.; Paramesh, R. In vitro anti-inflammatory and skin protective properties of Virgin coconut oil. J. Tradit. Complement. Med. 2018, 9, 5–14. [Google Scholar] [CrossRef]
- Halim, H.H.; Dek, M.S.P.; Hamid, A.A.; Saari, N.; Lazim, M.I.M.; Abas, F.; Ngalim, A.; Ismail, A.; Jaafar, A.H. Novel sources of bioactive compounds in coconut (Cocos nucifera L.) water from different maturity levels and varieties as potent skin anti-aging strategies and anti-fatigue agents. Food Biosci. 2023, 51. [Google Scholar] [CrossRef]
- Deen, A.; Visvanathan, R.; Wickramarachchi, D.; Marikkar, N.; Nammi, S.; Jayawardana, B.C.; Liyanage, R. Chemical composition and health benefits of coconut oil: An overview. J. Sci. Food Agric. 2020, 101, 2182–2193. [Google Scholar] [CrossRef]
- Michalak, M.; Pierzak, M.; Kręcisz, B.; Suliga, E. Bioactive Compounds for Skin Health: A Review. Nutrients 2021, 13, 203. [Google Scholar] [CrossRef]
- Satheeshan, K.N.; Seema, B.R.; Meera Manjusha, A.V. Development of virgin coconut oil based body lotion. Pharma Innov. J. 2020, 9, 96–101. [Google Scholar]
- Obembe, O.O.; Bello, O.A.; Ayanda, O.I.; Aworunse, O.S.; Olukanmi, B.I.; Soladoye, M.O.; Esan, E.B. Solanecio biafrae: An underutilized nutraceutically-important african indigenous vegetable. Pharmacogn. Rev. 2018, 12, 128. [Google Scholar] [CrossRef]
- Pupala, S.S.; Rao, S.; Strunk, T.; Patole, S. Topical application of coconut oil to the skin of preterm infants: A systematic review. Eur. J. Pediatr. 2019, 178, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Oliveira, P.; Chamorro, F.; Donn, P.; Garcia-Perez, P.; Seyyedi-Mansour, S.; Silva, A.; Echave, J.; Simal-Gandara, J.; Cassani, L.; Prieto, M.A. Characterization of Phenolic Compounds of Arnica montana Conventional Extracts. Eng. Proc. 2023, 48, 61. [Google Scholar] [CrossRef]
- Sakamoto, K.; Watanabe, C.; Masutani, T.; Hirasawa, A.; Wakamatsu, K.; Iddamalgoda, A.; Kakumu, Y.; Yamauchi, K.; Mitsunaga, T. Arnica montana L. extract containing 6-O-methacryloylhelenalin and 6-O-isobutyrylhelenalin accelerates growth and differentiation of human subcutaneous preadipocytes and leads volumizing of skin. Int. J. Cosmet. Sci. 2023, 45, 1–13. [Google Scholar] [CrossRef]
- Žitek, T.; Postružnik, V.; Knez, Ž.; Golle, A.; Dariš, B.; Knez Marevci, M. Arnica Montana, L. Supercritical Extraction Optimization for Antibiotic and Anticancer Activity. Front. Bioeng. Biotechnol. 2022, 10, 897185. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ma, H.; Li, P.; Zhang, S.; Xu, J.; Wang, L.; Sheng, W.; Xu, T.; Shen, L.; Wang, W.; et al. Cucumber (Cucumis sativus L.) with heterologous poly-γ-glutamic acid has skin moisturizing, whitening and anti-wrinkle effects. Int. J. Biol. Macromol. 2024, 262, 130026. [Google Scholar]
- Rai, A.; Chugh, V.; Pandey, S. Cucumber (Cucumis sativus L.): Genetic Improvement for Nutraceutical Traits. In Compendium of Crop Genome Designing for Nutraceuticals 1527–1544; Springer Nature Singapore: Singapore, 2023. [Google Scholar] [CrossRef]
- Kryst, J. Cosmetics containing turmeric in the light of the results of scientific research. Aesthetic Cosmetol. Med. 2023, 12, 169–174. [Google Scholar] [CrossRef]
- Bharadvaja, N.; Gautam, S.; Singh, H. Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Mol. Biol. Rep. 2022, 50, 1817–1828. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; El Rayess, Y.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Choi, D.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int. J. Nanomed. 2016, 11, 1987–2007. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Aggarwal, G.; Dhingra, G.A.; Nagpal, M. Herbal active ingredients used in skin cosmetics. Asian J. Pharm. Clin. Res. 2019, 12, 7–15. [Google Scholar] [CrossRef]
- Vo, T.S.; Vo, T.T.B.C.; Vo, T.T.T.N.; Lai, T.N.H. Turmeric (Curcuma longa L.): Chemical components and their effective clinical applications. J. Turkish Chem. Soc. Sect. A Chem. 2021, 8, 883–898. [Google Scholar] [CrossRef]
- de Macedo, L.M.; Dos Santos, É.M.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L.; syn Salvia rosmarinus spenn.) and its topical applications: A review. Plants 2020, 9, 651. [Google Scholar] [CrossRef] [PubMed]
- Damianova, S.; Tasheva, S.; Stoyanova, A.; Damianov, D. Investigation of extracts from rosemary (Rosmarinus officinalis L.) for application in cosmetics. J. Essent. Oil-Bearing Plants 2010, 13, 1–11. [Google Scholar] [CrossRef]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef] [PubMed]
- Aziz, E.; Batool, R.; Akhtar, W.; Shahzad, T.; Malik, A.; Shah, M.A.; Iqbal, S.; Rauf, A.; Zengin, G.; Bouyahya, A.; et al. Rosemary species: A review of phytochemicals, bioactivities and industrial applications. S. Afr. J. Bot. 2022, 151, 3–18. [Google Scholar] [CrossRef]
- González-Minero, F.J.; Bravo-Díaz, L.; Ayala-Gómez, A. Rosmarinus officinalis L. (Rosemary): An Ancient Plant with Uses in Personal Healthcare and Cosmetics. Cosmetics 2020, 7, 77. [Google Scholar] [CrossRef]
- Baral, P.; Bagul, V.; Gajbhiye, S. Hemp seed oil for skin care (non-drug Cannabis Sativa. World J. Pharm. Res. 2020, 9, 2534–2556. [Google Scholar]
- Mnekin, L.; Ripoll, L. Topical use of Cannabis Sativa l. Biochemicals. Cosmetics 2021, 8, 85. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Bujak, T.; Ziemlewska, A.; Nizioł-Łukaszewska, Z. Positive Effect of Cannabis sativa L. Herb Extracts on Skin Cells and Assessment of Cannabinoid-Based Hydrogels Properties. Molecules 2021, 26, 802. [Google Scholar] [CrossRef]
- Sridhar, S.N.C.; George, G.; Verma, A.; Paul, A.T. Natural products-based pancreatic lipase inhibitors for obesity treatment. In Natural Bio-Active Compounds: Volume 1: Production and Applications; Springer: Berlin/Heidelberg, Germany, 2019; p. 1. [Google Scholar]
- Baby, A.R.; Freire, T.B.; Marques, G.d.A.; Rijo, P.; Lima, F.V.; de Carvalho, J.C.M.; Rojas, J.; Magalhães, W.V.; Velasco, M.V.R.; Morocho-Jácome, A.L. Azadirachta indica (Neem) as a Potential Natural Active for Dermocosmetic and Topical Products: A Narrative Review. Cosmetics 2022, 9, 58. [Google Scholar] [CrossRef]
- Gupta, A.; Ansari, S.; Gupta, S.; Narwani, M.; Gupta, M.; Singh, M.; Manali Singh, C. Therapeutics role of neem and its bioactive constituents in disease prevention and treatment. J. Pharmacogn. Phytochem. 2019, 8, 680–691. [Google Scholar]
- Sarkar, S.; Singh, R.P.; Bhattacharya, G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: An update on molecular approach. 3 Biotech 2021, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Sharma, A.; Kaur, J.; Kumari, S.; Garg, M.; Sindhu, R.K.; Rahman, H.; Akhtar, M.F.; Tagde, P.; Najda, A.; et al. Bioactive-Based Cosmeceuticals: An Update on Emerging Trends. Molecules 2022, 27, 828. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Glycyrrhiza, L.; Fatoki, T.H.; Ajiboye, B.O. Dermatocosmetic Activities of Phytoconstituents in Licorice (Glycyrrhiza glabra L.). Cosmetics 2023, 10, 69. [Google Scholar] [CrossRef]
- Uto, T.; Ohta, T.; Yamashita, A.; Fujii, S.; Shoyama, Y. Liquiritin and Liquiritigenin Induce Melanogenesis via Enhancement of p38 and PKA Signaling Pathways. Medicines 2019, 6, 68. [Google Scholar] [CrossRef]
- Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. [Google Scholar] [CrossRef]
- Chiu, C.-S.; Huang, P.-H.; Chan, Y.-J.; Li, P.-H.; Lu, W.-C. d-limonene nanoemulsion as skin permeation enhancer for curcumin prepared by ultrasonic emulsification. J. Agric. Food Res. 2024, 15. [Google Scholar] [CrossRef]
- Raj, N.D.; Singh, D. A critical appraisal on ferulic acid: Biological profile, biopharmaceutical challenges and nano formulations. Health Sci. Rev. 2022, 5, 100063. [Google Scholar] [CrossRef]
- Ahsan, H. Immunopharmacology and immunopathology of peptides and proteins in personal products. J. Immunoass. Immunochem. 2019, 40, 439–447. [Google Scholar] [CrossRef]
- Johnson, W.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Tripeptide-1, Hexapeptide-12, Their Metal Salts and Fatty Acyl Derivatives, and Palmitoyl Tetrapeptide-7 as Used in Cosmetics. Int. J. Toxicol. 2018, 37, 90S–102S. [Google Scholar] [CrossRef]
- Lintner, K.; Gerstein, F.; Solish, N. A serum containing vitamins C & E and a matrix-repair tripeptide reduces facial signs of aging as evidenced by Primos® analysis and frequently repeated auto-perception. J. Cosmet. Dermatol. 2020, 19, 3262–3269. [Google Scholar] [CrossRef]
- West, B.J.; Alabi, I.; Deng, S. A Face Serum Containing Palmitoyl Tripeptide-38, Hydrolyzed Hyaluronic Acid, Bakuchiol and a Polyherbal and Vitamin Blend Improves Skin Quality. J. Cosmet. Dermatol. Sci. Appl. 2021, 11, 237–252. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Ferreira, M.S.; Sousa-Lobo, J.M.; Sousa, E.; Almeida, I.F. Usage of Synthetic Peptides in Cosmetics for Sensitive Skin. Pharmaceuticals 2021, 14, 702. [Google Scholar] [CrossRef]
- An, J.H.; Lee, H.J.; Yoon, M.S.; Kim, D.H. Anti-Wrinkle Efficacy of Cross-Linked Hyaluronic Acid-Based Microneedle Patch with Acetyl Hexapeptide-8 and Epidermal Growth Factor on Korean Skin. Ann. Dermatol. 2019, 31, 263–271. [Google Scholar] [CrossRef]
- Jo, H.-W.; Lee, K.-H.; Kim, J.-H. Preparation and Evaluation of the Effect of Acetyl Hexapeptide-8 Ampoule for Scalp Treatment. Asian J. Beauty Cosmetol. 2021, 19, 435–444. [Google Scholar] [CrossRef]
- Raikou, V.; Kalogria, E.; Varvaresou, A.; Tsirivas, E.; Panderi, I. Quantitation of Acetyl Hexapeptide-8 in Cosmetics by Hydrophilic Interaction Liquid Chromatography Coupled to Photo Diode Array Detection. Separations 2021, 8, 125. [Google Scholar] [CrossRef]
- Wyrzykowski, D.; Wieczorek, R.; Kloska, A.; Errante, F.; Papini, A.M.; Makowska, J. Influence of the modification of the cosmetic peptide Argireline on the affinity toward copper(II) ions. J. Pept. Sci. 2023, 30, e3547. [Google Scholar] [CrossRef]
- Pickart, L.; Margolina, A. Skin Regenerative and Anti-Cancer Actions of Copper Peptides. Cosmetics 2018, 5, 29. [Google Scholar] [CrossRef]
- Suhendra, N.N.; Sumaetheiwit, R. The Efficacy of 7% Palmitoyl Pentapeptide-4 Serum for the Periorbital Wrinkle Reduction. In Rangsit Graduate Research Conference: RGRC; University of Maryland: Baltimore, MA, USA, 2020; pp. 2870–2884. [Google Scholar]
- Aruan, R.R.; Hutabarat, H.; Widodo, A.A.; Firdiyono, M.T.C.C.; Wirawanty, C.; Fransiska, L. Double-blind, Randomized Trial on the Effectiveness of Acetylhexapeptide-3 Cream and Palmitoyl Pentapeptide-4 Cream for Crow’s Feet. J. Clin. Aesthetic Dermatol. 2023, 16, 37–43. [Google Scholar]
- Wu, Y.; Cao, K.; Zhang, W.; Zhang, G.; Zhou, M. Protective and Anti-Aging Effects of 5 Cosmeceutical Peptide Mixtures on Hydrogen Peroxide-Induced Premature Senescence in Human Skin Fibroblasts. Ski. Pharmacol. Physiol. 2021, 34, 194–202. [Google Scholar] [CrossRef]
- Pai, V.; Bhandari, P.; Shukla, P. Topical peptides as cosmeceuticals. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 9–18. [Google Scholar] [CrossRef]
- Oshimura, E.; Sakamoto, K. Amino acids, peptides, and proteins. Cosmet. Sci. Technol. Theor. Princ. Appl. 2017, 285, 303. [Google Scholar] [CrossRef]
- Kee Kim, J.; Lee, H.; Yang, S.; Lee, E.; Kim, G. Composition Containing Collagen Peptide for Improving Skin Care. U.S. Patent Application No 13/060,825, 30 June 2011. [Google Scholar]
- Andreassi, M.; Andreassi, L. Antioxidants in dermocosmetology: From the laboratory to clinical application. J. Cosmet. Dermatol. 2003, 2, 153–160. [Google Scholar] [CrossRef]
- Martins, T.E.A.; de Oliveira Pinto, C.A.S.; de Oliveira, A.C.; Velasco, M.V.R.; Guitiérrez, A.R.G.; Rafael, M.F.C.; Tarazona, J.P.H.; Retuerto-Figueroa, M.G. Contribution of Topical Antioxidants to Maintain Healthy Skin—A Review. Sci. Pharm. 2020, 88, 27. [Google Scholar] [CrossRef]
- Alfei, S.; Marengo, B.; Zuccari, G. Oxidative stress, antioxidant capabilities, and bioavailability: Ellagic acid or urolithins? Antioxidants 2020, 9, 707. [Google Scholar] [CrossRef]
- Pincemail, J.; Meziane, S. On the Potential Role of the Antioxidant Couple Vitamin E/Selenium Taken by the Oral Route in Skin and Hair Health. Antioxidants 2022, 11, 2270. [Google Scholar] [CrossRef]
- Buenger, J.; Ackermann, H.; Jentzsch, A.; Mehling, A.; Pfitzner, I.; Reiffen, K.; Schroeder, K.; Wollenweber, U. An interlaboratory comparison of methods used to assess antioxidant potentials1. Int. J. Cosmet. Sci. 2006, 28, 135–146. [Google Scholar] [CrossRef]
- Susa, F.; Pisano, R. Advances in Ascorbic Acid (Vitamin C) Manufacturing: Green Extraction Techniques from Natural Sources. Processes 2023, 11, 3167. [Google Scholar] [CrossRef]
- Boo, Y.C. Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants 2022, 11, 1663. [Google Scholar] [CrossRef]
- Dodevska, T.; Hadzhiev, D.; Shterev, I. A Review on Electrochemical Microsensors for Ascorbic Acid Detection: Clinical, Pharmaceutical, and Food Safety Applications. Micromachines 2022, 14, 41. [Google Scholar] [CrossRef]
- Capponi, P.C.; Murri, D.; Pernice, C. Topical L-Ascorbic Acid Formulation for a Better Management of Non-Melanoma Skin Cancer: Perspective for Treatment Strategies. Pharmaceutics 2021, 13, 1201. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, G. Medical applications of stabilized ascorbic acid: A review of recent advances. Med. Lasers 2023, 12, 133–146. [Google Scholar] [CrossRef]
- Shahidi, F.; Pinaffi-Langley, A.C.C.; Fuentes, J.; Speisky, H.; de Camargo, A.C. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free. Radic. Biol. Med. 2021, 176, 312–321. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. The progress and application of vitamin E encapsulation—A review. Food Hydrocoll. 2021, 121. [Google Scholar] [CrossRef]
- Gamna, F.; Spriano, S. Vitamin E: A Review of Its Application and Methods of Detection When Combined with Implant Biomaterials. Materials 2021, 14, 3691. [Google Scholar] [CrossRef]
- Lephart, E.D. Phytoestrogens (Resveratrol and Equol) for Estrogen-Deficient Skin—Controversies/Misinformation versus Anti-Aging In Vitro and Clinical Evidence via Nutraceutical-Cosmetics. Int. J. Mol. Sci. 2021, 22, 11218. [Google Scholar] [CrossRef]
- Lin, M.-H.; Hung, C.-F.; Sung, H.-C.; Yang, S.-C.; Yu, H.-P.; Fang, J.-Y. The Bioactivities of Resveratrol and Its Naturally Occurring Derivatives on Skin. J. Food Drug Anal. 2021, 29, 15–38. [Google Scholar] [CrossRef]
- Szulc-Musioł, B.; Sarecka-Hujar, B. The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases—A Literature Review. Pharmaceutics 2021, 13, 451. [Google Scholar] [CrossRef]
- Leis, K.; Pisanko, K.; Jundziłł, A.; Mazur, E.; Męcińska-Jundziłł, K.; Witmanowski, H. Resveratrol as a factor preventing skin aging and affecting its regeneration. Adv. Dermatol. Allergol. 2022, 39, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Dang, L.; Guo, F.; Wang, X.; Zhao, W.; Zhao, R. Coenzyme Q10 enhances dermal elastin expression, inhibits IL-1α production and melanin synthesis in vitro. Int. J. Cosmet. Sci. 2012, 34, 273–279. [Google Scholar] [CrossRef]
- Guedes, L.d.S.; Martinez, R.M.; Bou-Chacra, N.A.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants 2021, 10, 1034. [Google Scholar] [CrossRef]
- Ramadhani, A.A.; Putranti, I.O. The Usage of Coenzyme Q10 on Skin Aging: A Systematic Review on Animal and Clinical Study. Scope J. 2024, 14, 418–429. [Google Scholar]
- Arenas-Jal, M.; Suñé-Negre, J.M.; García-Montoya, E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19, 574–594. [Google Scholar] [CrossRef]
- Cirilli, I.; Damiani, E.; Dludla, P.V.; Hargreaves, I.; Marcheggiani, F.; Millichap, L.E.; Orlando, P.; Silvestri, S.; Tiano, L. Role of Coenzyme Q10 in Health and Disease: An Update on the Last 10 Years (2010–2020). Antioxidants 2021, 10, 1325. [Google Scholar] [CrossRef]
- Shukla, D.; Nandi, N.K.; Singh, B.; Singh, A.; Kumar, B.; Narang, R.K.; Singh, C. Ferulic acid-loaded drug delivery systems for biomedical applications. J. Drug Deliv. Sci. Technol. 2022, 75. [Google Scholar] [CrossRef]
- Stompor-Gorący, M.; Machaczka, M. Recent Advances in Biological Activity, New Formulations and Prodrugs of Ferulic Acid. Int. J. Mol. Sci. 2021, 22, 12889. [Google Scholar] [CrossRef]
- Rehman, M.A.U. International Journal of Pharmacy & Integrated Health Sciences (ISSN: 2789-2840). Int. J. Pharm. Integr. Health Sci. 2022, 3, 40–54. [Google Scholar]
- Sherif, S.; Bendas, E.R.; Badawy, S. The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur. J. Pharm. Biopharm. 2014, 86, 251–259. [Google Scholar] [CrossRef]
- Shetty, S.; Shetty, S. Cubosome-based cosmeceuticals: A breakthrough in skincare. Drug Discov. Today 2023, 28, 103623. [Google Scholar] [CrossRef]
- Luo, X.; Xie, D.; Wu, T.; Xu, W.; Meng, Q.; Cao, K.; Hu, J. Evaluation of the protective roles of alpha-lipoic acid supplementation on nanomaterial-induced toxicity: A meta-analysis of in vitro and in vivo studies. Front. Nutr. 2022, 9, 991524. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Sharma, P. Augmented Glutathione Absorption from Oral Mucosa and its Effect on Skin Pigmentation: A Clinical Review. Clin. Cosmet. Investig. Dermatol. 2022, 15, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- Dilokthornsakul, W.; Dhippayom, T.; Dilokthornsakul, P. The clinical effect of glutathione on skin color and other related skin conditions: A systematic review. J. Cosmet. Dermatol. 2019, 18, 728–737. [Google Scholar] [CrossRef]
- Liu, H.-M.; Tang, W.; Wang, X.-Y.; Jiang, J.-J.; Zhang, W.; Wang, W. Safe and Effective Antioxidant: The Biological Mechanism and Potential Pathways of Ergothioneine in the Skin. Molecules 2023, 28, 1648. [Google Scholar] [CrossRef] [PubMed]
- Nabi, Z.A.; Mohammed-Jawad, N. The Role of Glutathione as a Bleaching Agent in Whitening Skin: A Review. Iraqi Natl. J. Med. 2022, 4, 138–146. [Google Scholar] [CrossRef]
- Nazhan Mahmood, M. The Effectiveness of Glutathione on Skin Lightening: A Review. Int. J. Med. Sci. 2022, 5, 2522–7386. [Google Scholar]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nisticò, S.P. Role of Vitamins in Skin Health: A Systematic Review. Curr. Nutr. Rep. 2020, 9, 226–235. [Google Scholar] [CrossRef]
- Gueniche, A.; Valois, A.; Calixto, L.S.; Hevia, O.S.; Labatut, F.; Kerob, D.; Nielsen, M. A dermocosmetic formulation containing Vichy volcanic mineralizing water, Vitreoscilla filiformis extract, niacinamide, hyaluronic acid, and vitamin E regenerates and repairs acutely stressed skin. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 26–34. [Google Scholar] [CrossRef]
- Joshi, M.; Hiremath, P.; John, J.; Ranadive, N.; Nandakumar, K.; Mudgal, J. Modulatory role of vitamins A, B3, C, D, and E on skin health, immunity, microbiome, and diseases. Pharmacol. Rep. 2023, 75, 1096–1114. [Google Scholar] [CrossRef]
- Ong, R.R.; Goh, C.F. Niacinamide: A review on dermal delivery strategies and clinical evidence. Drug Deliv. Transl. Res. 2024, 1–37. [Google Scholar] [CrossRef]
- Boo, Y.C. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants 2021, 10, 1315. [Google Scholar] [CrossRef]
- Coerdt, K.M.; Goggins, C.A.; Khachemoune, A. Vitamins A, B, C, and D: A Short Review for the Dermatologist. Altern. Ther. Health Med. 2021, 27, 41–48. [Google Scholar]
- Elgharably, N.; Al Abadie, M.; Al Abadie, M.; Ball, P.; Morrissey, H. Vitamin B group levels and supplementations in dermatology: Review of the literature. Dermatol. Rep. 2022. [Google Scholar] [CrossRef]
- Zhu, G.; Li, Z.; Tang, L.; Shen, M.; Zhou, Z.; Wei, Y.; Zhao, Y.; Bai, S.; Song, L. Associations of Dietary Intakes with Gynecological Cancers: Findings from a Cross-Sectional Study. Nutrients 2022, 14, 5026. [Google Scholar] [CrossRef]
- Spierings, N.M.K. Efficacy of VItamin A Cosmetic Products in the Improvement of Facial Skin Aging. J. Clin. Aesthet. Dermatol. 2021, 14, 33–40. [Google Scholar]
- Sadgrove, N.J.; Oblong, J.E.; Simmonds, M.S.J. Inspired by vitamin A for anti-ageing: Searching for plant-derived functional retinoid analogues. Ski. Health Dis. 2021, 1, e36. [Google Scholar] [CrossRef]
- Farris, P.K. Vitamin A: It’s role in cosmeceuticals for antiaging. Dermatol. Rev. 2023, 4, 268–277. [Google Scholar] [CrossRef]
- Zinder, R.; Cooley, R.; Vlad, L.G.; Molnar, J.A. Vitamin A and Wound Healing. Nutr. Clin. Pract. 2019, 34, 839–849. [Google Scholar] [CrossRef]
- Yanuar, R.F.; Indrayudha, P. A systematic review: Mechanism of action oral and topical retinol (Retinyl palmitate) as a therapy of acne skin in beauty products. J. Farm. Sains Prakt. 2023, 223–230. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients 2019, 11, 1093. [Google Scholar] [CrossRef]
- Luengo, E.; Condón-Abanto, S.; Condón, S.; Álvarez, I.; Raso, J. Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separation Purif. Technol. 2014, 136, 130–136. [Google Scholar] [CrossRef]
- Caseiro, M.; Ascenso, A.; Costa, A.; Creagh-Flynn, J.; Johnson, M.; Simões, S. Lycopene in human health. LWT 2020, 127, 109323. [Google Scholar] [CrossRef]
- Fajriyani, A.; Nurfirzatulloh, I.; Suherti, I.; Insani, M.; Sephia, R.A.; Shafira, R.A.; Yuniarsih, N. The Potential of Various Cosmetic Preparations of Tomato Fruit (Solanum lycopersicum) in Medicinal Uses: A Systematic Literature Review. Eureka Herba Indones. 2023, 4, 227–231. [Google Scholar] [CrossRef]
- Singh, R.V.; Sambyal, K. An overview of β-carotene production: Current status and future prospects. Food Biosci. 2022, 47. [Google Scholar] [CrossRef]
- Çalışlar, S. The Important of Beta Carotene on Poultry Nutrition. Selcuk J. Agric. Food Sci. 2019, 33, 252–259. [Google Scholar] [CrossRef]
- Mendes-Silva, T.D.C.D.; da Silva Andrade, R.F.; Ootani, M.A.; Mendes, P.V.D.; da Silva, M.R.F.; Souza, K.S.; dos Santos Correia, M.T.; da Silva, M.V.; de Oliveira, M.B.M. Biotechnological Potential of Carotenoids Produced by Extremophilic Microorganisms and Application Prospects for the Cosmetics Industry. Adv. Microbiol. 2020, 10, 397–410. [Google Scholar] [CrossRef]
- Biesalski, H.K.; Obermueller-Jevic, U.C. UV light, beta-carotene and human skin—Beneficial and potentially harmful effects. Arch. Biochem. Biophys. 2001, 389, 1–6. [Google Scholar] [CrossRef]
- Heinrich, U.; Wiebusch, M.; Tronnier, H.; Gärtner, C.; Eichler, O.; Sies, H.; Stahl, W. Supplementation with β-Carotene or a Similar Amount of Mixed Carotenoids Protects Humans from UV-Induced Erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Zerres, S.; Stahl, W. Carotenoids in human skin. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2019, 1865, 158588. [Google Scholar] [CrossRef]
- Faria-Silva, C.; Ascenso, A.; Costa, A.M.M.M.; Marto, J.; Carvalheiro, M.; Ribeiro, H.M.; Simões, S. Feeding the skin: A new trend in food and cosmetics convergence. Trends Food Sci. Technol. 2020, 95, 21–32. [Google Scholar] [CrossRef]
- dos Santos, M.; de Macedo, L.M.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.; Mazzola, P.G. Coffee by-products in topical formulations: A review. Trends Food Sci. Technol. 2021, 111, 280–291. [Google Scholar] [CrossRef]
- Contardi, M.; Lenzuni, M.; Fiorentini, F.; Summa, M.; Bertorelli, R.; Suarato, G.; Athanassiou, A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics 2021, 13, 999. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M.; Alam, S.; Hassan, I.; Pasupuleti, V.R. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12, 860508. [Google Scholar] [CrossRef]
- Magnani, C.; Isaac, V.L.B.; Correa, M.A.; Salgado, H.R.N. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods 2014, 6, 3203–3210. [Google Scholar] [CrossRef]
- Ko, K.; Dadmohammadi, Y.; Abbaspourrad, A. Nutritional and Bioactive Components of Pomegranate Waste Used in Food and Cosmetic Applications: A Review. Foods 2021, 10, 657. [Google Scholar] [CrossRef]
- Dini, I.; Laneri, S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021, 26, 3921. [Google Scholar] [CrossRef]
- Afandi, N. Natural active ingredients used in topical cosmetic formulations for anti-ageing: A systematic review. Int. J. Pharm. Nutraceuticals Cosmet. Sci. 2022, 5, 67–78. [Google Scholar] [CrossRef]
- Ceci, C.; Graziani, G.; Faraoni, I.; Cacciotti, I. Strategies to improve ellagic acid bioavailability: From natural or semisynthetic derivatives to nanotechnological approaches based on innovative carriers. Nanotechnology 2020, 31, 382001. [Google Scholar] [CrossRef]
- Tomou, E.-M.; Papakyriakopoulou, P.; Saitani, E.-M.; Valsami, G.; Pippa, N.; Skaltsa, H. Recent Advances in Nanoformulations for Quercetin Delivery. Pharmaceutics 2023, 15, 1656. [Google Scholar] [CrossRef]
- Tripathi, N.; Verma, S.; Vyas, M.; Yadav, N.S.; Gain, S.; Khatik, G.L. Nanoformulations of quercetin: A potential phytochemical for the treatment of uv radiation induced skin damages. Braz. J. Pharm. Sci. 2022, 58. [Google Scholar] [CrossRef]
- Donoso, A.; González-Durán, J.; Muñoz, A.A.; González, P.A.; Agurto-Muñoz, C. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacol. Res. 2021, 166, 105479. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; De Deyn, M.L.Z.Q.; Loke, W.; Foo, N.X.; Chan, H.W.; Yeo, W.S. Effects of Astaxanthin Supplementation on Skin Health: A Systematic Review of Clinical Studies. J. Diet. Suppl. 2020, 18, 169–182. [Google Scholar] [CrossRef]
- Singh, K.N.; Patil, S.; Barkate, H. Protective effects of astaxanthin on skin: Recent scientific evidence, possible mechanisms, and potential indications. J. Cosmet. Dermatol. 2020, 19, 22–27. [Google Scholar] [CrossRef]
- Lima, S.G.M.; Freire, M.C.L.C.; Oliveira, V.d.S.; Solisio, C.; Converti, A.; de Lima, A.N. Astaxanthin Delivery Systems for Skin Application: A Review. Mar. Drugs 2021, 19, 511. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Diksha; Kumari, A.; Panwar, A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. J. Basic Microbiol. 2021, 62, 1064–1082. [Google Scholar] [CrossRef]
- Dutta, S.; Kumar, S.J.; Banerjee, R. A comprehensive review on astaxanthin sources, structure, biochemistry and applications in the cosmetic industry. Algal Res. 2023, 74. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Q.; Orfila, C.; Zhao, J.; Zhang, L. Systematic Review and Meta-Analysis on the Effects of Astaxanthin on Human Skin Ageing. Nutrients 2021, 13, 2917. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Sacher, M.; Blume, G.; Janßen, F.; Herrling, T. How Active are Biocosmetic Ingredients? SOFW J. 2007, 133, 2–7. [Google Scholar]
- Huang, M.-C.J.; Tang, J. Probiotics in personal care products. Microbiol. Discov. 2015, 3, 5. [Google Scholar] [CrossRef]
- Uma, K.V.; Sutheeswaran, G.; Martin, J.V.; Gujadhur, M.; Moudgil, K. An educational review on Probiotics. Curr. Issues Pharm. Med Sci. 2021, 34, 114–117. [Google Scholar] [CrossRef]
- Kopp-Hoolihan, L. Prophylactic and Therapeutic Uses of Probiotics. J. Am. Diet. Assoc. 2001, 101, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Hyseni, E.; Dodov, M.G. Probiotics in dermatological and cosmetic products—Application and efficiency. Maced. Pharm. Bull. 2023, 68, 9–26. [Google Scholar] [CrossRef]
- Yin, C.-S.; Nguyen, T.T.M.; Yi, E.-J.; Zheng, S.; Bellere, A.D.; Zheng, Q.; Jin, X.; Kim, M.; Park, S.; Oh, S.; et al. Efficacy of probiotics in hair growth and dandruff control: A systematic review and meta-analysis. Heliyon 2024, 10, e29539. [Google Scholar] [CrossRef]
- Yu, J.; Ma, X.; Wang, X.; Cui, X.; Ding, K.; Wang, S.; Han, C. Application and mechanism of probiotics in skin care: A review. J. Cosmet. Dermatol. 2022, 21, 886–894. [Google Scholar] [CrossRef]
- Czajeczny, D.; Wójciak, R.; Kabzińska-Milewska, K. Bifidobacterium lactis BS01 and Lactobacillus acidophilus LA02 supplementation may change the mineral balance in healthy young women. J. Elementology 2021, 26, 849–859. [Google Scholar] [CrossRef]
- Moreira, C.F.; Cassini-Vieira, P.; Canesso, M.C.C.; Felipetto, M.; Ranfley, H.; Teixeira, M.M.; Nicoli, J.R.; Martins, F.S.; Barcelos, L.S. Lactobacillus rhamnosus CGMCC 1.3724 (LPR) Improves Skin Wound Healing and Reduces Scar Formation in Mice. Probiotics Antimicrob. Proteins 2021, 13, 709–719. [Google Scholar] [CrossRef]
- Holowacz, S.; Blondeau, C.; Guinobert, I.; Guilbot, A.; Hidalgo, S.; Bisson, J. Lactobacillus salivarius LA307 and Lactobacillus rhamnosus LA305 attenuate skin inflammation in mice. Benef. Microbes 2018, 9, 299–310. [Google Scholar] [CrossRef]
- Imko-Walczuk, B.; Taraszkiewicz, A.; Mäyrä, A. Soothing Efficacy and Tolerability of a Skin Care Product Containing Live Lactobacillus rhamnosus Bacteria and Berry Seed Oils on Atopic Dermatitis Lesions. J. Cosmet. Dermatol. Sci. Appl. 2019, 09, 83–93. [Google Scholar] [CrossRef]
- Suriano, E.S.; Souza, M.D.M.; Kobata, C.M.; Santos, F.H.Y.; Mimica, M.J. Efficacy of an adjuvant Lactobacillus rhamnosus formula in improving skin lesions as assessed by PASI in patients with plaque psoriasis from a university-affiliated, tertiary-referral hospital in São Paulo (Brazil): A parallel, double-blind, randomized clinical trial. Arch. Dermatol. Res. 2023, 315, 1621–1629. [Google Scholar] [CrossRef]
- Cerchiara, T.; Giordani, B.; Melgoza, L.M.; Prata, C.; Parolin, C.; Dalena, F.; Abruzzo, A.; Bigucci, F.; Luppi, B.; Vitali, B. New Spanish Broom dressings based on Vitamin E and Lactobacillus plantarum for superficial skin wounds. J. Drug Deliv. Sci. Technol. 2020, 56, 101499. [Google Scholar] [CrossRef]
- Nam, B.; Kim, S.A.; Park, S.D.; Kim, H.J.; Kim, J.S.; Bae, C.H.; Kim, J.Y.; Nam, W.; Lee, J.L.; Sim, J.H. Regulatory effects of Lactobacillus plantarum HY7714 on skin health by improving intestinal condition. PLoS ONE 2020, 15, e0231268. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, J.G.; Jang, Y.A.; Bayazid, A.B.; Lim, B.O. Fermented black rice and blueberry with Lactobacillus plantarum MG4221 improve UVB-induced skin injury. Food Agric. Immunol. 2021, 32, 499–515. [Google Scholar] [CrossRef]
- Mo, Q.; You, S.; Fu, H.; Wang, D.; Zhang, J.; Wang, C.; Li, M. Purification and Identification of Antioxidant Peptides from Rice Fermentation of Lactobacillus plantarum and Their Protective Effects on UVA−Induced Oxidative Stress in Skin. Antioxidants 2022, 11, 2333. [Google Scholar] [CrossRef] [PubMed]
- Prakoeswa, C.R.S.; Bonita, L.; Karim, A.; Herwanto, N.; Umborowati, M.A.; Setyaningrum, T.; Hidayati, A.N.; Surono, I.S. Beneficial effect of Lactobacillus plantarum IS-10506 supplementation in adults with atopic dermatitis: A randomized controlled trial. J. Dermatol. Treat. 2020, 33, 1491–1498. [Google Scholar] [CrossRef]
- Zhou, X.; Du, H.-H.; Ni, L.; Ran, J.; Hu, J.; Yu, J.; Zhao, X. Nicotinamide Mononucleotide Combined With Lactobacillus fermentum TKSN041 Reduces the Photoaging Damage in Murine Skin by Activating AMPK Signaling Pathway. Front. Pharmacol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-K.; Jang, Y.J.; Han, D.H.; Seo, B.; Park, S.; Lee, C.H.; Ko, G. Administration of Lactobacillus fermentum KBL375 Causes Taxonomic and Functional Changes in Gut Microbiota Leading to Improvement of Atopic Dermatitis. Front. Mol. Biosci. 2019, 6, 92. [Google Scholar] [CrossRef]
- Iulia-Burra, F.; Ortega Martínez, E.; Ruiz Martínez, M.A.; Morales Hernández, M. encarnación. Diseño y elaboración de un sérum facial con Lactobacillus fermentum CECT 5716. Ars Pharm. 2023, 64, 230–242. [Google Scholar] [CrossRef]
- Pastor-Villaescusa, B.; Hurtado, J.A.; Gil-Campos, M.; Uberos, J.; Maldonado-Lobón, J.A.; Díaz-Ropero, M.P.; Bañuelos, O.; Fonollá, J.; Olivares, M.; the PROLAC Group. Effects of Lactobacillus fermentum CECT5716 Lc40 on infant growth and health: A randomised clinical trial in nursing women. Benef. Microbes 2020, 11, 235–244. [Google Scholar] [CrossRef]
- Kim, M.J.; Beak, H.K.; Choi, J.E.; Lee, E.S.; Kim, K.; Kim, C.M.; Park, S.J. Simple methods for selection of T-DNA-free segregants from offspring of gene-edited Solanum nigrum. Plant Biotechnol. Rep. 2022, 16, 257–264. [Google Scholar] [CrossRef]
- Shin, M.J.; Lee, C.S.; Kim, S.H. Screening for Lactic Acid Bacterial Strains as Probiotics Exhibiting Anti-inflammatory and Antioxidative Characteristic Via Immune Modulation in HaCaT Cell. Probiotics Antimicrob. Proteins 2023, 15, 1665–1680. [Google Scholar] [CrossRef] [PubMed]
- Nagino, T.; Kaga, C.; Kano, M.; Masuoka, N.; Anbe, M.; Moriyama, K.; Maruyama, K.; Nakamura, S.; Shida, K.; Miyazaki, K. Effects of fermented soymilk with Lactobacillus casei Shirota on skin condition and the gut microbiota: A randomised clinical pilot trial. Benef. Microbes 2018, 9, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Lazarenko, L.M.; Babenko, L.P.; Gichka, S.G.; Sakhno, L.O.; Demchenko, O.M.; Bubnov, R.V.; Sichel, L.M.; Spivak, M.Y. Assessment of the Safety of Lactobacillus casei IMV B-7280 Probiotic Strain on a Mouse Model. Probiotics Antimicrob. Proteins 2021, 13, 1644–1657. [Google Scholar] [CrossRef]
- Cukrowska, B.; Ceregra, A.; Maciorkowska, E.; Surowska, B.; Zegadło-Mylik, M.A.; Konopka, E.; Trojanowska, I.; Zakrzewska, M.; Bierła, J.B.; Zakrzewski, M.; et al. The Effectiveness of Probiotic Lactobacillus rhamnosus and Lactobacillus casei Strains in Children with Atopic Dermatitis and Cow’s Milk Protein Allergy: A Multicenter, Randomized, Double Blind, Placebo Controlled Study. Nutrients 2021, 13, 1169. [Google Scholar] [CrossRef]
- Kikukawa, H.; Nagao, T.; Ota, M.; Takashima, S.; Kitaguchi, K.; Yanase, E.; Maeda, S.; Hara, K.Y. Production of a selective antibacterial fatty acid against Staphylococcus aureus by Bifidobacterium strains. Microbiome Res. Rep. 2023, 2, 4. [Google Scholar] [CrossRef]
- Quezada, M.P.; Salinas, C.; Gotteland, M.; Cardemil, L. Acemannan and Fructans from Aloe vera (Aloe barbadensis Miller) Plants as Novel Prebiotics. J. Agric. Food Chem. 2017, 65, 10029–10039. [Google Scholar] [CrossRef]
- Wang, R.; Yan, S.; Ma, X.; Zhao, J.; Han, Y.; Pan, Y.; Zhao, H. The pivotal role of Bifida Ferment Lysate on reinforcing the skin barrier function and maintaining homeostasis of skin defenses in vitro. J. Cosmet. Dermatol. 2023, 22, 3427–3435. [Google Scholar] [CrossRef]
- Sun, S.; Chang, G.; Zhang, L. The prevention effect of probiotics against eczema in children: An update systematic review and meta-analysis. J. Dermatol. Treat. 2021, 33, 1844–1854. [Google Scholar] [CrossRef]
- Anania, C.; Brindisi, G.; Martinelli, I.; Bonucci, E.; D’orsi, M.; Ialongo, S.; Nyffenegger, A.; Raso, T.; Spatuzzo, M.; De Castro, G.; et al. Probiotics Function in Preventing Atopic Dermatitis in Children. Int. J. Mol. Sci. 2022, 23, 5409. [Google Scholar] [CrossRef] [PubMed]
- Lew, L.-C.; Liong, M.-T. Bioactives from probiotics for dermal health: Functions and benefits. J. Appl. Microbiol. 2013, 114, 1241–1253. [Google Scholar] [CrossRef]
- Probiotic Research in Therapeutics; Springer Nature: Dordrecht, The Netherlands, 2022.
- Lee, K.-S.; Kim, Y.; Lee, J.H.; Shon, S.; Kim, A.; Pham, A.V.Q.; Kim, C.; Kim, D.H.; Kim, Y.-K.; Cho, E.-G. Human Probiotic Lactobacillus paracasei-Derived Extracellular Vesicles Improve Tumor Necrosis Factor-α-Induced Inflammatory Phenotypes in Human Skin. Cells 2023, 12, 2789. [Google Scholar] [CrossRef] [PubMed]
- da Silva Vale, A.; de Melo Pereira, G.V.; de Oliveira, A.C.; de Carvalho Neto, D.P.; Herrmann, L.W.; Karp, S.G.; Soccol, V.T.; Soccol, C.R. Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation 2023, 9, 264. [Google Scholar] [CrossRef]
- Nicholas-Haizelden, K.; Murphy, B.; Hoptroff, M.; Horsburgh, M.J. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023, 11, 1899. [Google Scholar] [CrossRef] [PubMed]
- Baldi, M.; Reynaud, R.; Lefevre, F.; Fleury, M.; Scandolera, A.; Maramaldi, G. Synergistic use of bioactive agents for the management of different skin conditions: An overview of biological activities. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1450–1466. [Google Scholar] [CrossRef] [PubMed]
- Bolke, L.; Schlippe, G.; Gerß, J.; Voss, W. A Collagen Supplement Improves Skin Hydration, Elasticity, Roughness, and Density: Results of a Randomized, Placebo-Controlled, Blind Study. Nutrients 2019, 11, 2494. [Google Scholar] [CrossRef]
- De Luca, C.; Mikhal’chik, E.V.; Suprun, M.V.; Papacharalambous, M.; Truhanov, A.I.; Korkina, L.G. Skin Antiageing and Systemic Redox Effects of Supplementation with Marine Collagen Peptides and Plant-Derived Antioxidants: A Single-Blind Case-Control Clinical Study. Oxidative Med. Cell. Longev. 2016, 2016, 4389410. [Google Scholar] [CrossRef]
- Woodby, B.; Penta, K.; Pecorelli, A.; Lila, M.A.; Valacchi, G. Skin Health from the Inside Out. Annu. Rev. Food Sci. Technol. 2020, 11, 235–254. [Google Scholar] [CrossRef]
- Holkem, A.T.; da Silva, M.P.; Favaro-Trindade, C.S. Probiotics and plant extracts: A promising synergy and delivery systems. Crit. Rev. Food Sci. Nutr. 2022, 63, 9561–9579. [Google Scholar] [CrossRef]
- Makhamrueang, N.; Raiwa, A.; Jiaranaikulwanitch, J.; Kaewarsar, E.; Butrungrod, W.; Sirilun, S. Beneficial Bio-Extract of Camellia sinensis var. assamica Fermented with a Combination of Probiotics as a Potential Ingredient for Skin Care. Cosmetics 2023, 10, 85. [Google Scholar] [CrossRef]
- Park, M.-J.; Bae, Y.-S. Fermented Acanthopanax koreanum Root Extract Reduces UVB- and H2O2-Induced Senescence in Human Skin Fibroblast Cells. J. Microbiol. Biotechnol. 2016, 26, 1224–1233. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Jeon, S.; Jo, J.; Kim, Y.; Kim, H. Synergistic Antibacterial Effects of Probiotic Lactic Acid Bacteria with Curcuma longa Rhizome Extract as Synbiotic against Cutibacterium acnes. Appl. Sci. 2020, 10, 8955. [Google Scholar] [CrossRef]
- Rybak, I.; Haas, K.N.; Dhaliwal, S.K.; Burney, W.A.; Pourang, A.; Sandhu, S.S.; Maloh, J.; Newman, J.W.; Crawford, R.; Sivamani, R.K. Prospective Placebo-Controlled Assessment of Spore-Based Probiotic Supplementation on Sebum Production, Skin Barrier Function, and Acne. J. Clin. Med. 2023, 12, 895. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Wang, X.; Li, Y.; Ren, F. The Role of Probiotics in Skin Health and Related Gut–Skin Axis: A Review. Nutrients 2023, 15, 3123. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Feng, N.; Guo, F.; Chen, Z.; Liang, J.; Wang, T.; Guo, X.; Xu, Z. Applications of Probiotic Constituents in Cosmetics. Molecules 2023, 28, 6765. [Google Scholar] [CrossRef]
- Fortuna, M.C.; Garelli, V.; Pranteda, G.; Romaniello, F.; Cardone, M.; Carlesimo, M.; Rossi, A. A case of Scalp Rosacea treated with low dose doxycycline and probiotic therapy and literature review on therapeutic options. Dermatol. Ther. 2016, 29, 249–251. [Google Scholar] [CrossRef]
- Shin, M.; Truong, V.-L.; Lee, M.; Kim, D.; Kim, M.S.; Cho, H.; Jung, Y.H.; Yang, J.; Jeong, W.S.; Kim, Y. Investigation of phenyllactic acid as a potent tyrosinase inhibitor produced by probiotics. Curr. Res. Food Sci. 2022, 6, 100413. [Google Scholar] [CrossRef]
- Kaur, K.; Rath, G. Formulation and evaluation of UV protective synbiotic skin care topical formulation. J. Cosmet. Laser Ther. 2019, 21, 332–342. [Google Scholar] [CrossRef]
- Makvandi, P.; Caccavale, C.; Della Sala, F.; Zeppetelli, S.; Veneziano, R.; Borzacchiello, A. Natural Formulations Provide Antioxidant Complement to Hyaluronic Acid-Based Topical Applications Used in Wound Healing. Polymers 2020, 12, 1847. [Google Scholar] [CrossRef]
- Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.-L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef]
Extract | Effect | Primary Active Ingredients | References |
---|---|---|---|
Green Tea Extract | Antioxidant, anti-hyaluronidase, anti-inflammatory, slimming, hair-strengthening, photoprotective and sealing blood vessels properties | Epigallocatechin-3-gallate and epicatechin-3-gallate | [13,14] |
Chamomile Extract | Anti-inflammatory properties, antioxidant activity, skin-soothing effects, anti-microbial properties, moisturizing and hydrating, skin lightening, and wound healing | Bisoprolol, matricin, and chamazulene, luteolin, rutin, and apigenin, hydroxycoumarins, and mucilages | [15,16,17,18,19,20] |
Aloe Vera Extract | Anti-inflammatory, antiseptic and antimicrobial, anti-tumor, photoprotective, antidiabetic, antibacterial, and wound healing | Chromone and its glycoside derivatives, anthraquinone and its glycoside derivatives, flavonoids, phenylpropanoids and coumarins, phenylpyrone and phenol derivatives, and phytosterol | [21,22,23,24] |
Calendula Extract | Wound healing and for soothing inflamed and damaged skin | Terpenoids and terpenes (mainly bisabolol, faradiol, chamazulene, arnidiol and esters), carotenoids (mainly with rubixanthin and lycopene structures), flavonoids (mainly quercetin, isorhamnetin, and kaempferol aglycones), and polyunsaturated fatty acids (mainly calendic acid) | [25,26,27] |
Licorice Extract | Wound healing, protects the skin against oxidative stress injuries, accelerates wound epithelization, ameliorates remodeling at the wound site, and efficiently reduce the symptoms of atopic dermatitis | Glycyrrhizin, liquiritin, liquiritigenin, isoliquiritigenin, amines (asparagine, betaine, and choline), and sterols (stigmasterol and β-sitosterol) | [28,29,30,31] |
Ginseng Extract | Whitening, anti-wrinkle, and anti-aging | Ginsenosides, gintonin, polysaccharides, phenolic compounds, and Triterpenoids | [32,33,34,35,36,37,38,39] |
Coconut Oil | Moisturizing, soothing the skin, anti-inflammatory, skin protective benefits, and antimicrobial properties | Lauric (12:0), myristic (14:0), and palmitic (16:0) acids, gallic acid, hydroxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, caffeic acid, ferulic acid, cinnamic acid, sterols, and phospholipids | [40,41,42,43,44,45,46] |
Arnica Extract | Antioxidant, anti-inflammatory, antimicrobial effects, reduces wrinkles, and creates a more youthful appearance | 6-O-methacryloylhelenalin and 6-O-isobutyrylhelenalin, kaempferol, p-coumaric, caffeoylquinic, and dicaffeolyquinic acid | [47,48,49] |
Cucumber Extract | Treating inflammation under the eyes, sunburn, reducing hyperpigmentation, face cleaning, removal of freckles, and whitening | Cucurbitacins, cucumegastigmanes I and II, cucumerin A and B, vitexin, orientin, isoscoparin 2″-O-(6‴-(E)-p-coumaroyl) glucoside, and apigenin 7-O-(6″-O-p-coumaroylglucoside) | [47,48,49,50,51] |
Turmeric Extract | Treating photoaging, inflammation, hair loss, lip care, psoriasis, ultraviolet (UV) toxicity, treating vitiligo, photodamage, and skin rejuvenation | Curcumin, dimethoxycurcumin, and bisdimethoxycurcumin | [52,53,54,55,56,57] |
Rosemary Extract | Dandruff, skin diseases, inhibit skin tumorigenesis, and skin conditioning | Carnosol, carnosic acid, rosmarinic acid, ursolic acid, oleanolic acid, and micromeric acid | [58,59,60,61,62] |
Cannabis extract | Treatment of acne, allergic contact dermatitis, melanoma, psoriasis, anti-aging, photoprotective, and skin hydration | Essential fatty acids (linoleic acid, α-linoleic acid and γ-linoleic acid), tocopherols, flavonoids, terpenes, etc. | [63,64,65] |
Neem Extract | Skin-soothing, melanogenesis inhibition, treating acne, psoriasis, eczema, mycosis, warts, prevent dermatitis, and anti-aging | Nimbidin, nimbin, β-sitosterol, 6-desacetylnimbinene, nimbinone, nimbolicin, nimbidiol, nimbione, margocin, etc. | [66,67,68,69] |
Peptides | Function | Mechanism | References |
---|---|---|---|
Palmitoyl Tripeptide-1 | Anti-aging and conditioning of sensitive skin | Stimulates collagen production in the skin | [78,79,80,81] |
Palmitoyl Tetrapeptide-7 (Matrixyl) | Anti-aging | Reduces inflammation and increases collagen production | [78,81] |
Acetyl Hexapeptide-8 (Argireline) | Anti-wrinkle | Inhibits neurotransmission | [81,82,83,84] |
Copper Peptides | Anti-aging, anti-wrinkle, and anti-pigmentation | Increases antioxidant activity, stimulates collagen production, improves wound contraction and epithelization | [85,86] |
Palmitoyl Pentapeptide-4 (Matrixyl 3000) | Anti-aging and anti-wrinkle | Increases collagen production | [87,88] |
Palmitoyl Tripeptide-38 (Matrixyl Synthe’6) | Anti-aging | Increases dermal and epidermal collagen, fibronectin and hyaluronic acid production | [79,80] |
Acetyl Tetrapeptide-5 | Anti-aging and skin protection, increases hydroxyproline and elastin contents | Antioxidant | [81,89] |
Antioxidants | Function | References |
---|---|---|
Ascorbic Acid (Vitamin C) | Reduces hyperpigmentation, stimulation of collagen formation, wound healing, acts as an anti-inflammatory, and anti-wrinkle | [98,99,100,101,102] |
Tocopherol (Vitamin E) | Treatment for atopic dermatitis, anti-photoaging, skin dryness treatment products, anti-aging, antibacterial, anti-inflammatory, and anti-cancer | [103,104,105] |
Resveratrol | Wound healing, anti-aging, anti-pigmentation, anti-photoaging, treating dermatitis, and skin cancer | [106,107,108,109] |
Coenzyme Q10 (Ubiquinone) | Anti-aging, anti-inflammatory, and photoprotective | [110,111,112,113,114] |
Ferulic Acid | Anti-aging, photoprotective, and wound healing | [76,115,116] |
Alpha-Lipoic Acid | Anti-nanomaterial-induced toxicity, anti-aging, and anti-wrinkle | [117,118,119,120] |
Glutathione | Skin whitening | [94,121,122,123,124,125] |
Niacinamide (Vitamin B3) | Treatment of cancer, blistering disorders, acne vulgaris, psoriasis, wound healing, pigmentation disorders, skin brightening, anti-aging properties, skin barrier protection, and skin regeneration | [126,127,128,129,130,131,132] |
Retinol (Vitamin A) | Anti-aging, anti-photodamage, anti-wrinkle, and wound healing | [133,134,135,136,137,138] |
Lycopene | Maintain skin integrity, treating AD, moisturize skin, anti-aging, and photoprotective | [139,140,141,142] |
Beta-Carotene | Photoprotective, moisturizing, and protects skin integrity | [143,144,145,146,147,148,149] |
Caffeic Acid | Anti-photoaging, anti-photodamage, and promotes collagen production | [150,151,152,153,154] |
Ellagic Acid | Anti-aging, photoprotection, and skin lightening | [95,155,156,157,158] |
Quercetin | Photoprotection and anti-aging | [55,68,159,160] |
Astaxanthin | Photoprotective, anti-aging, anti-wrinkle, skin hydration, wound healing, anti-cancer properties, and anti-eczema effects | [161,162,163,164,165,166,167] |
Probiotics | Effects | Mechanism | References |
---|---|---|---|
Lactobacillus acidophilus | UVB protection, improving mineral balance and possible antidepressive effect, promotes hair growth, skin moisturization, anti-photoaging, anti-wrinkle, and whitening effect | Increases mineral absorption in the gut, improves skin barrier, inhibits cleavage of collagen, antioxidant activity | [172,173,174,175] |
Lactobacillus rhamnosus | Anti-photoaging, treatment of eczematous lesions, accelerates skin wound closure and reduces scarring, preserves skin integrity, and treats psoriasis | Reduces macrophage activity, improves angiogenesis, modulation of the gut microbiota, improves skin barrier, antioxidant activity | [172,174,176,177,178,179] |
Lactobacillus plantarum | Improves skin and gut health, protection from photodamage, and treats skin wounds | Antibacterial and antifungal activity, increases antioxidant activity of plant extracts, regulates gut and skin microbiome | [180,181,182,183,184] |
Lactobacillus fermentum | Skin hydration, improves atopic dermatitis, and reduces photoaging | Skin–gut axis modulation, regulates mitochondrial membrane potential (MMP), anti-inflammatory and antioxidative activities | [185,186,187,188,189,190] |
Lactobacillus casei | Skin condition improvement and treatment of atopic dermatitis | Increased levels of isoflavone absorption, modulates gut microbiota, immune regulation, anti-microbial activity | [191,192,193] |
Bifidobacterium sp. | Skin condition improvement, strengthens the skin barrier, and treats atopic dermatitis | Anti-microbial, antioxidant, and anti-inflammatory activity | [181,191,194,195,196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.Y.; Lee, Y.J.; Kim, C.M.; Lee, Y.-M. Revolutionizing Cosmetic Ingredients: Harnessing the Power of Antioxidants, Probiotics, Plant Extracts, and Peptides in Personal and Skin Care Products. Cosmetics 2024, 11, 157. https://doi.org/10.3390/cosmetics11050157
Choi HY, Lee YJ, Kim CM, Lee Y-M. Revolutionizing Cosmetic Ingredients: Harnessing the Power of Antioxidants, Probiotics, Plant Extracts, and Peptides in Personal and Skin Care Products. Cosmetics. 2024; 11(5):157. https://doi.org/10.3390/cosmetics11050157
Chicago/Turabian StyleChoi, Hye Yung, Yun Jung Lee, Chul Min Kim, and Young-Mi Lee. 2024. "Revolutionizing Cosmetic Ingredients: Harnessing the Power of Antioxidants, Probiotics, Plant Extracts, and Peptides in Personal and Skin Care Products" Cosmetics 11, no. 5: 157. https://doi.org/10.3390/cosmetics11050157
APA StyleChoi, H. Y., Lee, Y. J., Kim, C. M., & Lee, Y. -M. (2024). Revolutionizing Cosmetic Ingredients: Harnessing the Power of Antioxidants, Probiotics, Plant Extracts, and Peptides in Personal and Skin Care Products. Cosmetics, 11(5), 157. https://doi.org/10.3390/cosmetics11050157