The Influence of Physical Characteristics of Wet Wipe Fabrics on the Microbial Biomass Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrics Information
2.2. Contact Angle
2.3. Surface Zeta Potential
2.4. pH and Conductivity
2.5. Fiber Diameter
2.6. Pore Size
2.7. Surface Area
2.8. Total Microbial Bioburden Enumeration
2.9. Microorganism Culture Conditions
2.10. Confocal Laser Scanning Microscopy (CLSM) and Image Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Fabrics Information
3.2. Fabrics Contact Angle
3.3. Zeta Potential as an Indicator for Fabrics Polarity:
3.4. pH and Conductivity Change over Time
3.5. Fabrics Hydrophilicity and Microbial Biomass Accumulation
3.6. Fabrics Geometry and Its Correlation with Microbial Biomass Accumulation
3.7. Microorganisms Penetration into the Fabrics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadley, T.; Hickey, K.; Lix, K.; Sharma, S.; Berretta, T.; Navessin, T. Flushed but Not Forgotten: The Rising Costs and Opportunities of Disposable Wet Wipes. Bioresources 2023, 18, 2271–2287. [Google Scholar] [CrossRef]
- Salama, P.; Gliksberg, A.; Cohen, M.; Tzafrir, I.; Ziklo, N. Why Are Wet Wipes So Difficult to Preserve? Understanding the Intrinsic Causes. Cosmetics 2021, 8, 73. [Google Scholar] [CrossRef]
- Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.-H.; Stackebrandt, E. (Eds.) The Prokaryotes; Springer: New York, NY, USA, 2006; ISBN 978-0-387-25492-0. [Google Scholar]
- Killham, K.; Prosser, J.I. The Bacteria and Archaea. In Soil Microbiology, Ecology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 41–76. [Google Scholar]
- Heilmann, C. Adhesion Mechanisms of Staphylococci. Adv. Exp. Med. Biol. 2011, 715, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Goulter, R.M.; Gentle, I.R.; Dykes, G.A. Issues in Determining Factors Influencing Bacterial Attachment: A Review Using the Attachment of Escherichia Coli to Abiotic Surfaces as an Example. Lett. Appl. Microbiol. 2009, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Ghosh, S.; Bhowmick, N.; Roy Choudhury, P.K. Role of Physicochemical Factors on Bacterial Attachment in Textile Fibrous Media. Water Environ. J. 2019, 33, 21–30. [Google Scholar] [CrossRef]
- Song, F.; Koo, H.; Ren, D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Berne, C.; Ellison, C.K.; Ducret, A.; Brun, Y.V. Bacterial Adhesion at the Single-Cell Level. Nat. Rev. Microbiol. 2018, 16, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Hemmatian, T.; Lee, H.; Kim, J. Bacteria Adhesion of Textiles Influenced by Wettability and Pore Characteristics of Fibrous Substrates. Polymers 2021, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Cavitt, T.B.; Pathak, N. Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates. Pharmaceuticals 2021, 14, 977. [Google Scholar] [CrossRef]
- Yoon, S.H.; Rungraeng, N.; Song, W.; Jun, S. Superhydrophobic and Superhydrophilic Nanocomposite Coatings for Preventing Escherichia Coli K-12 Adhesion on Food Contact Surface. J. Food Eng. 2014, 131, 135–141. [Google Scholar] [CrossRef]
- Sohn, Y.S.; Jung, S.K.; Lee, S.Y.; Kim, H.T. Antibacterial Effects of a Carbon Nitride (CN) Layer Formed on Non-Woven Polypropylene Fabrics Using the Modified DC-Pulsed Sputtering Method. Polymers 2023, 15, 2641. [Google Scholar] [CrossRef]
- Kargar, M.; Wang, J.; Nain, A.S.; Behkam, B. Controlling Bacterial Adhesion to Surfaces Using Topographical Cues: A Study of the Interaction of Pseudomonas Aeruginosa with Nanofiber-Textured Surfaces. Soft Matter 2012, 8, 10254–10259. [Google Scholar] [CrossRef]
- Abrigo, M.; Kingshott, P.; McArthur, S.L. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl. Mater. Interfaces 2015, 7, 7644–7652. [Google Scholar] [CrossRef]
- Erramilli, S.; Genzer, J. Influence of Surface Topography Attributes on Settlement and Adhesion of Natural and Synthetic Species. Soft Matter 2019, 15, 4045–4067. [Google Scholar] [CrossRef]
- Varshney, S.; Sain, A.; Gupta, D.; Sharma, S. Factors Affecting Bacterial Adhesion on Selected Textile Fibres. Indian J. Microbiol. 2021, 61, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Cheng, Y.; Wang, S.Y.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Bacterial Attachment and Biofilm Formation on Surfaces Are Reduced by Small-Diameter Nanoscale Pores: How Small Is Small Enough? NPJ Biofilms Microbiomes 2015, 1, 15022. [Google Scholar] [CrossRef] [PubMed]
- Todros, S.; Pavan, P.G.; Natali, A.N. Synthetic Surgical Meshes Used in Abdominal Wall Surgery: Part I—Materials and Structural Conformation. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 689–699. [Google Scholar] [CrossRef]
- Pascoe, M.J.; Mandal, S.; Williams, O.A.; Maillard, J.Y. Impact of Material Properties in Determining Quaternary Ammonium Compound Adsorption and Wipe Product Efficacy against Biofilms. J. Hosp. Infect. 2022, 126, 37–43. [Google Scholar] [CrossRef]
- Kaelble, D.H. Dispersion-Polar Surface Tension Properties of Organic Solids. J. Adhes. 1970, 2, 66–81. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 374. [Google Scholar] [CrossRef]
- George, A.; Stephen Brunauer, B. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Yapar, E.A.; Cengiz, G. International Standards of Microbiological Quality in Cosmetic Products. Curr. Pers. MAPs 2018, 2, 120–122. [Google Scholar]
- Wirotesangthong, M. Microbiological Limits in Cosmetics. Isan J. Pharm. Sci. 2021, 17, 1–12. [Google Scholar] [CrossRef]
- Biswas, R.; Voggu, L.; Simon, U.K.; Hentschel, P.; Thumm, G.; Götz, F. Activity of the Major Staphylococcal Autolysin Atl. FEMS Microbiol. Lett. 2006, 259, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Gerami-Nejad, M.; Zacchi, L.F.; McClellan, M.; Matter, K.; Berman, J. Shuttle Vectors for Facile Gap Repair Cloning and Integration into a Neutral Locus in Candida Albicans. Microbiology 2013, 159, 565–579. [Google Scholar] [CrossRef]
- Jacobasch, H.-J.; Schurz, J. Characterization of Polymer Surfaces by Means of Electrokinetic Measurements. Prog. Colloid. Polym. Sci. 1988, 77, 40–48. [Google Scholar]
- Ripoll, L.; Bordes, C.; Marote, P.; Etheve, S.; Elaissari, A.; Fessi, H. Electrokinetic Properties of Bare or Nanoparticle-Functionalized Textile Fabrics. Colloids Surf. A Physicochem. Eng. Asp. 2012, 397, 24–32. [Google Scholar] [CrossRef]
- Elimelech, M.; Chen, W.H.; Waypa, J.J. Measuring the Zeta (Electrokinetic) Potential of Reverse Osmosis Membranes by a Streaming Potential Analyzer. Desalination 1994, 95, 269–286. [Google Scholar] [CrossRef]
- Quintana, E.; Valls, C.; Roncero, M.B. Dissolving-Grade Pulp: A Sustainable Source for Fiber Production. Wood Sci. Technol. 2024, 58, 23–85. [Google Scholar] [CrossRef]
- Kosan, B.; Thüringisches, F.M. Suitable Dissolving Pulps and Their Impacts on Solution Spinning of Cellulose Man-Made Fibers. Cellulose 2024, 31, 1941–1955. [Google Scholar] [CrossRef]
- Wilson, W.W.; Wade, M.M.; Holman, S.C.; Champlin, F.R. Status of Methods for Assessing Bacterial Cell Surface Charge. J. Microbiol. Methods 2001, 43, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, Q.; Zhang, Z.; Wang, X.; Niu, H. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-Inspiration, Strategies, and Applications. Adv. Fiber Mater. 2023, 5, 1555–1591. [Google Scholar] [CrossRef] [PubMed]
- Møllebjerg, A.; Palmén, L.G.; Gori, K.; Meyer, R.L. The Bacterial Life Cycle in Textiles Is Governed by Fiber Hydrophobicity. Microbiol. Spectr. 2021, 9, e01185-21. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Newby, B.Z. Applicability of the Extended Derjaguin–Landau–Verwey–Overbeek Theory on the Adsorption of Bovine Serum Albumin on Solid Surfaces. Biointerphases 2014, 9, 041006. [Google Scholar] [CrossRef] [PubMed]
- Salas-Tovar, J.A.; Escobedo-García, S.; Olivas, G.I.; Acosta-Muñiz, C.H.; Harte, F.; Sepulveda, D.R. Method-Induced Variation in the Bacterial Cell Surface Hydrophobicity MATH Test. J. Microbiol. Methods 2021, 185, 106234. [Google Scholar] [CrossRef]
- Chong, P.; Erable, B.; Bergel, A. Effect of Pore Size on the Current Produced by 3-Dimensional Porous Microbial Anodes: A Critical Review. Bioresour. Technol. 2019, 289, 121641. [Google Scholar] [CrossRef]
Fabric Name | Density (gr/m2; gsm) | Supplier | Water Contact Angle (°) | Apolar Liquid Contact Angle (°) | ∆pH | ∆Conductivity (µS/cm) | Pore Diameter Size (µm) | Fiber Diameter (µm) | Surface Area (m2/g) |
---|---|---|---|---|---|---|---|---|---|
PET 80 gsm | 80 | Kingmax, China | 147.2 ± 3.6 | 43.9 ± 3.9 | 1.32 ± 0.05 | 109.4 ± 32.7 | 88 ± 16.9 | 10.5 ± 1.0 | 0.39 ± 0.007 |
PET 56 gsm | 56 | Kingmax, China | 139 ± 9.4 | 26.9 ± 7 | 1.2 ± 0.3 | 129 ± 28.2 | 109 ± 15.3 | 10.4 ± 1.8 | 0.22 ± 0.003 |
PET 48 gsm | 48.5 | Kingmax, China | 147.2 ± 1.5 | 0 | 0.39 ± 0.24 | 126.3 ± 29.6 | 131 ± 15.2 | 12.1 ± 0.6 | 0.21 ± 0.009 |
Viscose 80 gsm | 80 | Qingdao, China | 48.1 ± 2.84 | 28.4 ± 3.9 | 0.6 ± 0.12 | 274.5 ± 106 | 71 ± 8.7 | 11.9 ± 2.5 | 0.39 ± 0.008 |
Viscose 50 gsm #1 | 50 | Soonercleaning, China | 48.3 ± 2.85 | 43.7 ± 1.7 | 0.19 ± 0.095 | 319.3 ± 65.5 | 86 ± 12.1 | 11.4 ± 1.8 | 0.37 ± 0.009 |
Viscose 50 gsm #2 | 50 | AL-BAD, Israel | 0 | 66.3 ± 0.4 | 0.13 ± 0.08 | 262.8 ± 62.3 | 103 ± 15.3 | 11.7 ± 1.9 | 0.38 ± 0.01 |
Wood pulp 50 gsm | 50 | Soonercleaning, China | 46 ± 0.82 | 71.4 ± 3.3 | −2.2 ± 0.04 | 1246 ± 81.3 | 105 ± 7.3 | 31.1 ± 12.3 | 0.37 ± 0.004 |
Wood pulp 60 gsm | 60 | PPE, Chaina | 30.5 ± 0.6 | 66.9 ± 7.2 | −1.92 ± 0.3 | 939.1 ± 83.3 | 83 ± 7.9 | 32.8 ± 11.2 | 0.4 ± 0.003 |
Sample | TAMC (CFU/g) | TYMC (CFU/g) |
---|---|---|
PET 80 gsm | 4 × 102 | 2.2 × 102 |
PET 56 gsm | 3 × 102 | 1.7 × 102 |
PET 48 gsm | 2.8 × 102 | 1.6 × 102 |
Viscose 80 gsm | 2.3 × 102 | 1.1 × 102 |
Viscose 50 gsm #1 | 5.3 × 102 | 1.8 × 102 |
Viscose 50 gsm #2 | 1.2 × 102 | 5 × 101 |
Wood pulp 60 gsm | 1.6 × 102 | 9 × 101 |
Wood pulp 50 gsm | 3.2 × 102 | 1.4 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziklo, N.; Yuli, I.; Bibi, M.; Salama, P. The Influence of Physical Characteristics of Wet Wipe Fabrics on the Microbial Biomass Accumulation. Cosmetics 2024, 11, 106. https://doi.org/10.3390/cosmetics11040106
Ziklo N, Yuli I, Bibi M, Salama P. The Influence of Physical Characteristics of Wet Wipe Fabrics on the Microbial Biomass Accumulation. Cosmetics. 2024; 11(4):106. https://doi.org/10.3390/cosmetics11040106
Chicago/Turabian StyleZiklo, Noa, Idit Yuli, Maayan Bibi, and Paul Salama. 2024. "The Influence of Physical Characteristics of Wet Wipe Fabrics on the Microbial Biomass Accumulation" Cosmetics 11, no. 4: 106. https://doi.org/10.3390/cosmetics11040106
APA StyleZiklo, N., Yuli, I., Bibi, M., & Salama, P. (2024). The Influence of Physical Characteristics of Wet Wipe Fabrics on the Microbial Biomass Accumulation. Cosmetics, 11(4), 106. https://doi.org/10.3390/cosmetics11040106