Compatibility Investigation of Cationic Surfactants with Anionic Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conductometry
2.2. Isothermal Titration Calorimetry
2.3. Challenge Test
3. Results and Discussion
3.1. DDAC and Anionic Species—Conductivity
3.2. DDAC and Anionic Species—ITC
3.3. SLES and Cationic Preservatives—Conductivity
3.4. Heat Maps
3.5. Microbiological Correlation by Challenge Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A Review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Cornwell, P.A. A review of shampoo surfactant technology: Consumer benefits, raw materials and recent developments. Int. J. Cosmet. Sci. 2018, 40, 16–30. [Google Scholar] [CrossRef]
- Filipović-Vinceković, N.; Bujan, M.; Dragčević, D.; Nekić, N. Phase behavior in mixtures of cationic and anionic surfactants in aqueous solutions. Colloid Polym. Sci. 1995, 273, 182–188. [Google Scholar] [CrossRef]
- Boglioni, P. Surfactants in Solution; Mittal, K.L., Bothorel, P., Eds.; Plenum: New York, NY, USA, 1987; Volume 4, p. 393. [Google Scholar]
- Herrington, K.L.; Kaler, E.W.; Miller, D.D.; Zasadzinski, J.A.; Chiruvolu, S. Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS). J. Phys. Chem. 1993, 97, 13792–13802. [Google Scholar] [CrossRef]
- Matsuki, H.; Aratono, M.; Kaneshina, S.; Motomura, K. Extremely Strong Interaction of Sodium Decyl Sulfate and Decyltrimethylammonium Bromide in Molecular Aggregates. J. Colloid Interface Sci. 1997, 191, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Halle, B.; Landgren, M.; Jönsson, B. The shape of ionic micelles. J. Phys. Fr. 1988, 49, 235–1259. [Google Scholar] [CrossRef]
- Sachin, K.M.; Karpe, S.A.; Singh, M.; Bhattarai, A. An Interaction of Anionic- and Cationic-Rich Mixed Surfactants in Aqueous Medium through Physicochemical Properties at Three Different Temperatures. J. Chem. 2018, 2018, 4594062. [Google Scholar] [CrossRef]
- Xu, X.; Chow, P.; Quek, C.; Hng, H.; Gan, L. Nanoparticles of polystyrene latexes by semicontinuous microemulsion polymerization using mixed surfactants. J. Nanosci. Nanotechnol. 2003, 3, 235–240. [Google Scholar] [CrossRef]
- Li, P.; Ma, K.; Thomas, R.K.; Penfold, J. Analysis of the asymmetric synergy in the adsorption of zwitterionic−ionic surfactant mixtures at the air−water interface below and above the critical micelle concentration. J. Phys. Chem. B 2016, 120, 3677–3691. [Google Scholar] [CrossRef]
- Pal, A.; Pillania, A. Thermodynamic and aggregation properties of aqueous dodecyltrimethylammonium bromide in the presence of hydrophilic ionic liquid 1,2-dimethyl-3-octylimidazolium chloride. J. Mol. Liq. 2015, 212, 818–824. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Li, Y. Interaction between cationic and anionic surfactants: Detergency and foaming properties of mixed systems. J. Surfactants Deterg. 2014, 17, 881–888. [Google Scholar] [CrossRef]
- Sharma, K.; Chauhan, S. Effect of biologically active amino acids on the surface activity and micellar properties of industrially important ionic surfactants. Colloids Surf A Physicochem. Eng. Asp. 2014, 453, 78–85. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Saha, S.K. Study on mixed micelles cationic gemini surfactants having hydroxyl groups in the spacers with conventional cationic surfactants: Effects of spacer and hydrocarbon tail length. Ind. Eng. Chem. Res. 2013, 52, 5895–5905. [Google Scholar]
- Sohrabi, B.; Gharibi, H.; Tajik, B.; Javadian, S.; Hashemianzadeh, M. Molecular interactions of cationic and anionic surfactants in mixed monolayers and aggregates. J. Phys. Chem. B 2008, 112, 14869–14876. [Google Scholar] [CrossRef]
- Bonnaud, M.; Weiss, J.; Mcclements, D.J. Interaction of a Food-Grade Cationic Surfactant (Lauric Arginate) with Food-Grade Biopolymers (Pectin, Carrageenan, Xanthan, Alginate, Dextran, and Chitosan). J. Agric. Food Chem. 2010, 58, 9770–9777. [Google Scholar] [CrossRef]
- Benford, D.; Harrison, R.; Larsen, J.; DiNovi, M. Safety Evaluation of Certain Food Additives: Ethyl Lauroyl Arginate; World Health Organization: Geneva, Switzerland, 2009; pp. 30–85. [Google Scholar]
- Dai, Y.M.; Normand, M.D.; Weiss, J.; Peleg, M. Modeling the efficacy of triplet antimicrobial combinations: Yeast suppression by lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate as a case study. J. Food Prot. 2010, 73, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Boonsongrit, Y.; Mueller, B.W.; Mitrevej, A. Characterization of drug–chitosan interaction by 1 H NMR, FTIR and isothermal titration calorimetry. Eur. J. Pharm. Biopharm. 2008, 69, 388–395. [Google Scholar] [CrossRef]
- Pierce, M.M.; Raman, C.S.; Nall, B.T. Isothermal Titration Calorimetry of Protein–Protein Interactions. Methods 1999, 19, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Callies, O.; Daranas, A.H. Application of isothermal titration calorimetry as a tool to study natural product interactions. Nat. Prod. Rep. 2016, 33, 881–904. [Google Scholar] [CrossRef]
- Wang, C.; Tam, K.C. Interactions between Poly(acrylic acid) and Sodium Dodecyl Sulfate: Isothermal Titration Calorimetric and Surfactant Ion-Selective Electrode Studies. J. Phys. Chem. B 2005, 109, 5156–5161. [Google Scholar] [CrossRef]
- Benrraou, M.; Bales, B.L.; Zana, R. Effect of the Nature of the Counterion on the Properties of Anionic Surfactants. 1. Cmc, Ionization Degree at the Cmc and Aggregation Number of Micelles of Sodium, Cesium, Tetramethylammonium, Tetraethylammonium, Tetrapropylammonium, and Tetrabutylammonium Dodecyl Sulfates. J. Phys. Chem. B 2003, 107, 13432–13440. [Google Scholar] [CrossRef]
- Hirata, H.; Hattori, N.; Ishida, M.; Okabayashi, H.; Frusaka, M.; Zanas, R. Small-Angle Neutron-Scattering Study of Bis(quaternary ammonium bromide) Surfactant Micelles in Water. Effect of the Spacer Chain Length on Micellar Structure. J. Phys. Chem. 1995, 99, 17778–17784. [Google Scholar] [CrossRef]
- Khan, M.N.; Sarwar, A. Study of dye–surfactant interaction: Aggregation and dissolution of yellowish in N-dodecyl pyridinum chloride. Fluid Phase Equilib. 2006, 239, 166–171. [Google Scholar] [CrossRef]
- Tunc, S.; Duman, O. Investigation of interactions between some anionic dyes and cationic surfactants by conductometric method. Fluid Phase Equilib. 2007, 251, 1–7. [Google Scholar] [CrossRef]
- Ziklo, N.; Tzafrir, I.; Shulkin, R.; Salama, P. Salicylate UV-Filters in Sunscreen Formulations Compromise the Preservative System Efficacy against Pseudomonas aeruginosa and Burkholderia cepacia. Cosmetics 2020, 7, 63. [Google Scholar] [CrossRef]
- Salama, P.; Gliksberg, A. The Use of Catalytic Amounts of Selected Cationic Surfactants in the Design of New Synergistic Preservative Solutions. Cosmetics 2021, 8, 54. [Google Scholar] [CrossRef]
- Domínguez, A.; Fernández, A.; González, N.; Iglesias, E.; Montenegro, L. Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. J. Chem. Educ. 1997, 74, 1227–1231. [Google Scholar] [CrossRef]
- Cookey, G.A.; Nwokobia, F.U. Conductivity Studies of Binary Mixtures of Ionic and Non-ionic Surfactants at different Temperatures and Concentrations. J. Appl. Sci. Environ. Mana. 2014, 18, 530–534. [Google Scholar] [CrossRef]
- López-Díaz, D.; Velázquez, M.M. Variation of the critical micelle concentration with surfactant structure: A simple method to analyze the role of the attractive-repulsive forces on the micellar association. J. Chem. Educ. 2007, 7, 327–330. [Google Scholar]
- Tyowua, A.T.; Yiase, S.G.; Wuanna, R.A. Manipulation of Concentration-Conductivity Data of Sodium Dodecyl Sulphate and Sodium Dodecylbenzene Sulphonate in KCl Solution in Relation to Micellisation Parameters. J. Chem. Sci. 2012, 79, 3–8. [Google Scholar] [CrossRef]
- Park, E.-J.; Seong, E.; Kang, M.-S.; Lee, G.-H.; Kim, D.-W.; Han, J.-S.; Lim, H.-J.; Lee, S.H.; Hanf, H.-Y. Formation of lamellar body-like structure may be an initiator of didecyldimethylammonium chloride-induced toxic response. Toxicol. Appl. Pharmacol. 2020, 404, 115182–115196. [Google Scholar] [CrossRef]
- Hao, J.; Hoffmann, H. Self-assembled structures in excess and salt-free catanionic surfactant solutions. Curr. Opin. Colloid Interface Sci. 2004, 9, 279–293. [Google Scholar] [CrossRef]
- Mukhim, T.; Dey, J.; Das, S.; Ismail, K. Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. J. Colloid Interface Sci. 2010, 350, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Blankschtein, D. Effect of Counterion Binding on Micellar Solution Behavior: 2. Prediction of Micellar Solution Properties of Ionic Surfactant−Electrolyte Systems. Langmuir 2003, 19, 9946–9961. [Google Scholar] [CrossRef]
- Yan, P.; Xiao, J.X. Polymer–surfactant interaction: Differences between alkyl sulfate and alkyl sulfonate. Colloids Surf. A Physicochem. Eng. Asp. 2004, 244, 39–44. [Google Scholar] [CrossRef]
- Huibers, P.D.T. Quantum-Chemical Calculations of the Charge Distribution in Ionic Surfactants. Langmuir 1999, 15, 7546–7550. [Google Scholar] [CrossRef]
- Weers, J.G.; Rathman, J.F.; Axe, F.U.; Crichlow, C.A.; Foland, L.D.; Scheuing, D.R.; Wiersema, R.J.; Zielske, A.G. Effect of the Intramolecular Charge Separation Distance on the Solution Properties of Betaines and Sulfobetaines. Langmuir 1991, 7, 854–867. [Google Scholar] [CrossRef]
- Russell, A.D. Challenge testing: Principles and practice. Int. J. Cosmet. Sci. 2003, 25, 147–153. [Google Scholar] [CrossRef]
- Connolly, P.; Bloomfield, S.F.; Denyerl, S.P. The use of impedance for preservative efficacy testing of pharmaceuticals and cosmetic products. J. Appl. Bacteriol. 1994, 76, 68–74. [Google Scholar] [CrossRef]
Chemical and Trade Names | Molecular Structure | Abbreviation |
---|---|---|
Sodium lauryl sulfate | SLS | |
Sodium laureth sulfate Trade Name: ETA 70 | SLE2S | |
Sodium lauroyl 2-methyl isethionate Trade name: Iselux | Isethionate | |
Sodium Lauroyl Sarcosinate | Sarcosinate | |
Sodium Lauroyl Glycinate Trade name: Pureact SLG | Glycinate | |
Sodium Lauroyl Glutamate Trade name: Pureact GLT | Glutamate | |
Didecyldimethylammonium chloride | DDAC | |
Ethyl lauroyl arginate | ELA | |
Cocamidopropyl PG-Diammonium Chloride Phosphate Trade name: Cola lipid C | CLC | |
Sodium Coco PG-Diammonium Chloride Phosphate Trade name: Cola lipid DCCA | DCCA | |
Polyquaternium-80 Trade name: Poly Suga®Quat L-1210P | P-80 | |
Trade name: Suga Quat L-1010, Monomer-78 Laurdiammoniumhydroxypropyl Decylglucosides Chloride | M-78 |
Conductivity [µS/cm] | |||
---|---|---|---|
Concentration (mM) | NaCl | SLES and DDAC Organic Moieties without Na+ and Cl− | SLES and DDAC, Including Counterions |
0 | 0 | 0 | 0 |
1 | 90 | 10 | 100 |
5 | 330 | 35 | 365 |
10 | 650 | 63 | 713 |
15 | 925 | 85 | 1010 |
20 | 1150 | 108 | 1258 |
Sulfate | Sulfonate | Carboxylate | ||
---|---|---|---|---|
DDAC | n | 0.56–0.7 | 0.66 | ~0.1 |
ΔH (kcal/mol) | 6–7.5 | 5 | 1–2 | |
Ka [M] | ~104 | ~104 | ~103 | |
AUC | 2.6–3.9 | 2.6 | 0.1–0.25 |
Composition | Time | E. coli (Gram-Bacteria) | C. albicans (Yeast) |
---|---|---|---|
Anionic surfactant in Shampoo: SLES Cationic surfactant in preservative: DDAC | Inoculum | 1.1 × 106 | 1 × 105 |
2 days | 2 × 105 | 1 × 105 | |
7 days | 2 × 105 | 1.8 × 103 | |
14 days | 2 × 105 | 2.5 × 102 | |
21 days | 2 × 105 | <10 | |
28 days | 2.6 × 105 | <10 | |
Anionic surfactant in Shampoo: Glutamate Cationic surfactant in preservative: P-80 | Inoculum | 1.1 × 106 | 1 × 105 |
2 days | <10 | <10 | |
7 days | <10 | <10 | |
14 days | <10 | <10 | |
21 days | <10 | <10 | |
28 days | <10 | <10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuli, I.; Tzafrir, I.; Salama, P. Compatibility Investigation of Cationic Surfactants with Anionic Species. Cosmetics 2023, 10, 45. https://doi.org/10.3390/cosmetics10020045
Yuli I, Tzafrir I, Salama P. Compatibility Investigation of Cationic Surfactants with Anionic Species. Cosmetics. 2023; 10(2):45. https://doi.org/10.3390/cosmetics10020045
Chicago/Turabian StyleYuli, Idit, Inbal Tzafrir, and Paul Salama. 2023. "Compatibility Investigation of Cationic Surfactants with Anionic Species" Cosmetics 10, no. 2: 45. https://doi.org/10.3390/cosmetics10020045
APA StyleYuli, I., Tzafrir, I., & Salama, P. (2023). Compatibility Investigation of Cationic Surfactants with Anionic Species. Cosmetics, 10(2), 45. https://doi.org/10.3390/cosmetics10020045