A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fire Modeling Approach: The Large Fire Simulator
2.2.1. Weather
2.2.2. Large Fire Ignition and Growth
2.2.3. Landscape
2.2.4. Fire Suppression
2.3. Scenarios for Alternative Suppression Strategies
2.3.1. Scenario 1: Business-As-Usual, or Full Suppression
2.3.2. Scenario 2: Full Suppression of Human-Caused Fires, No Suppression of Lightning-Caused Fires
2.4. Post-Processing of FSim Outputs
2.5. Analysis
2.5.1. Number of Large Fires, Fire Sizes and Burn Probability
2.5.2. Feedback Analysis
3. Results
3.1. Number of Large Fires, Fire Sizes and Burn Probability
3.2. Feedback Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western U.S. forests. Proc. Natl. Acad. Sci. USA 2016. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.; Agee, J.K.; Fule, P.Z.; North, M.; Romme, W.; Swetnam, T.; Turner, M.G. Managing forests and fire in changing climates. Science 2013, 342, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Riley, K.L.; Loehman, R.A. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States. Ecosphere 2016, 7, e01543. [Google Scholar] [CrossRef]
- Paveglio, T.B.; Prato, T.; Hardy, M. Simulating effects of land use policies on extent of the wildland urban interface and wildfire risk in Flathead County, Montana. J. Environ. Manag. 2013, 130, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Calkin, D.E.; Gebert, K.M.; Jones, J.G.; Neilson, R.P. Forest Service large fire area burned and suppression expenditure trends, 1970–2002. J. For. 2005, 103, 179–183. [Google Scholar]
- Calkin, D.E.; Cohen, J.D.; Finney, M.A.; Thompson, M.P. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl. Acad. Sci. USA 2014, 111, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Chiono, L.A.; Fry, D.L.; Collins, B.M.; Chatfield, A.H.; Stephens, S.L. Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat. Ecosphere 2017, 8, e01648. [Google Scholar] [CrossRef]
- Miller, J.D.; Safford, H.D. Corroborating evidence of a pre-Euro-American low- to moderate-severity fire regime in yellow pine-mixed conifer forests of the Sierra Nevada, California, USA. Fire Ecol. 2017, 13, 58–90. [Google Scholar] [CrossRef]
- Weaver, H. Fire as an ecological and silvicultural factor in the ponderosa-pine region of the pacific slope. J. For. 1943, 41, 7–15. [Google Scholar]
- Weaver, H. Fire—Nature’s thinning agent in ponderosa pine stands. J. For. 1947, 45, 437–444. [Google Scholar]
- Weaver, H. Fire as an enemy, friend, and tool in forest management. J. For. 1955, 53, 499–504. [Google Scholar]
- Arno, S.F.; Brown, J.K. Overcoming the paradox in managing wildland fire. West. Wildlands 1991, 17, 40–46. [Google Scholar]
- Calkin, D.E.; Thompson, M.P.; Finney, M.A. Negative consequences of positive feedbacks in U.S. wildfire management. For. Ecosyst. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Olson, R.L.; Bengston, D.N.; DeVaney, L.A.; Thompson, T.A. Wildland Fire Management Futures: Insights from a Foresight Panel; General Technical Report NRS-152; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2015.
- Smith, A.M.S.; Kolden, C.A.; Paveglio, T.B.; Cochrane, M.A.; Bowman, D.M.J.S.; Moritz, M.A.; Kliskey, A.D.; Alessa, L.; Hudak, A.T.; Hoffman, C.M.; et al. The science of firescapes: Achieving fire-resilient communities. BioScience 2016, 66, 130–146. [Google Scholar] [CrossRef]
- North, M.; Stephens, S.; Collins, B.; Agee, J.; Aplet, G.; Franklin, J.; Fulé, P. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- North, M.; Collins, B.M.; Stephens, S. Using fire to increase the scale, benefits, and future maintenance of fuels treatments. J. For. 2012, 110, 392–401. [Google Scholar] [CrossRef]
- Schweizer, D.W.; Cisneros, R. Forest fire policy: Change conventional thinking of smoke management to prioritize long-term air quality and public health. Air Qual. Atmos. Health 2016. [Google Scholar] [CrossRef]
- Vaillant, N.M.; Fites-Kaufman, J.; Reimer, A.L.; Noonan-Wright, E.K.; Dailey, S.N. Effect of fuel treatment and fuels and potential fire behavior in California, USA, National Forests. Fire Ecol. 2009, 5, 14–29. [Google Scholar] [CrossRef]
- Barnett, K.; Parks, S.A.; Miller, C.; Naughton, H.T. Beyond fuel treatment effectiveness: Characterizing interactions between fire and treatments in the U.S. Forests 2016, 7, 237. [Google Scholar] [CrossRef]
- North, M.; Brough, A.; Long, J.; Collins, B.; Bowden, P.; Yasuda, D.; Miller, J.; Sugihara, N. Constraints on mechanized treatment significantly limit mechanical fuels reduction extent in the Sierra Nevada. J. For. 2015, 113, 40–48. [Google Scholar] [CrossRef]
- Collins, B.M.; Stephens, S.L.; Moghaddas, J.J.; Battles, J. Challenges and Approaches in Planning Fuel Treatments across Fire-Excluded Forested Landscapes. J. For. 2010, 108, 24–31. [Google Scholar]
- Pyne, S.J. Between Two Fires: A Fire History of Contemporary America; University of Arizona Press: Tucson, AZ, USA, 2015. [Google Scholar]
- Ager, A.A.; Vaillant, N.M.; McMahan, A. Restoration of fire in managed forests: A model to prioritize landscapes and analyze tradeoffs. Ecosphere 2013, 4, 1–19. [Google Scholar] [CrossRef]
- Ager, A.A.; Day, M.A.; Finney, M.A.; Vance-Borland, K.; Vaillant, N.M. Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. For. Ecol. Manag. 2014, 334, 377–390. [Google Scholar] [CrossRef]
- Ager, A.A.; Day, M.A.; Short, K.C.; Evers, C.R. Assessing the impacts of federal forest planning on wildfire risk mitigation in the Pacific Northwest, USA. Landsc. Urban Plan. 2016, 147, 1–17. [Google Scholar] [CrossRef]
- Haas, J.R.; Calkin, D.E.; Thompson, M.P. Wildfire risk transmission in the Colorado Front Range, USA. Risk Anal. 2015, 35, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.H.; Thompson, M.P.; Calkin, D.E. A Wildfire Risk Assessment Framework for Land and Resource Management; General Technical Report RMRS-GTR-315; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Newtown Square, PA, USA, 2013.
- Scott, J.H.; Thompson, M.P.; Gilbertson-Day, J.W. Examining alternative fuel management strategies and the relative contribution of National Forest System land to wildfire risk to adjacent homes—A pilot assessment on the Sierra National Forest, California, USA. For. Ecol. Manag. 2016, 362, 29–37. [Google Scholar] [CrossRef]
- Thompson, M.P.; Scott, J.; Helmbrecht, D.; Calkin, D.E. Integrated wildfire risk assessment: Framework development and application on the Lewis and Clark National Forest in Montana, USA. Integr. Environ. Assess. Manag. 2013, 9, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.P.; MacGregor, D.G.; Calkin, D.E. Risk Management: Core Principles and Practices, and Their Relevance to Wildland Fire; General Technical Report RMRS-GTR-350; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016.
- Meyer, M.D.; Roberts, S.L.; Wills, R.; Brooks, M.; Winford, E.M. Principles of effective USA federal fire management plans. Fire Ecol. 2015, 11, 59–83. [Google Scholar] [CrossRef]
- Thompson, M.P.; Bowden, P.; Brough, A.; Scott, J.H.; Gilbertson-Day, J.; Taylor, A.; Anderson, J.; Haas, J.R. Application of Wildfire Risk Assessment Results to Wildfire Response Planning in the Southern Sierra Nevada, California, USA. Forests 2016, 7, 64. [Google Scholar] [CrossRef]
- O’Connor, C.D.; Thompson, M.P.; Rodríguez y Silva, F. Getting Ahead of the Wildfire Problem: Quantifying and Mapping Management Challenges and Opportunities. GeoSciences 2016, 6, 35. [Google Scholar] [CrossRef]
- Rodríguez y Silva, F.; Martínez, J.R.M.; González-Cabán, A. A methodology for determining operational priorities for prevention and suppression of wildland fires. Int. J. Wildland Fire 2014, 23, 544–554. [Google Scholar] [CrossRef]
- Houtman, R.M.; Montgomery, C.A.; Gagnon, A.R.; Calkin, D.E.; Dietterich, T.G.; McGregor, S.; Crowley, M. Allowing a wildfire to burn: Estimating the effect on future fire suppression costs. Int. J. Wildland Fire 2013, 22, 871–882. [Google Scholar] [CrossRef]
- Duff, T.J.; Tolhurst, K.G. Operational wildfire suppression modelling: A review evaluating development, state of the art and future directions. Int. J. Wildland Fire 2015, 24, 735–748. [Google Scholar] [CrossRef]
- Gebert, K.M.; Calkin, D.E.; Yoder, J. Estimating suppression expenditures for individual large wildland fires. West. J. Appl. For. 2007, 22, 188–196. [Google Scholar]
- Riley, K.L.; Thompson, M.P. Uncertainty in modeling wildland fire. In Uncertainty in Natural Hazards: Modeling and Decision Support; Riley, K.L., Thompson, M.P., Webley, P.W., Eds.; Wiley and American Geophysical Union Books: New York City, NY, USA, 2017; pp. 193–213. [Google Scholar]
- National Cohesive Wildland Fire Management Strategy. Available online: https://www.forestsandrangelands.gov/strategy/thestrategy.shtml (accessed on 19 October 2017).
- Petrovic, N.; Carlson, J. A decision-making framework for wildfire suppression. Int. J. Wildland Fire 2012, 21, 927–937. [Google Scholar] [CrossRef]
- Brotons, L.; Aquilué, N.; de Cáceres, M.; Fortin, M.-J.; Fall, A. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes. PLoS ONE 2013, 8, e62392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calkin, D.E.; Venn, T.J.; Wibbenmeyer, M.; Thompson, M.P. Estimating U.S. federal wildland fire managers’ preferences toward competing strategic suppression objectives. Int. J. Wildland Fire 2013, 22, 212–222. [Google Scholar] [CrossRef]
- Calkin, D.E.; Stonesifer, C.S.; Thompson, M.P.; McHugh, C.W. Large airtanker use and outcomes in suppressing wildland fires in the United States. Int. J. Wildland Fire 2014, 23, 259–271. [Google Scholar] [CrossRef]
- Hand, M.S.; Wibbenmeyer, M.J.; Calkin, D.E.; Thompson, M.P. Risk preferences, probability weighting, and strategy tradeoffs in wildfire management. Risk Anal. 2015, 35, 1876–1891. [Google Scholar] [CrossRef] [PubMed]
- Hand, M.S.; Katuwal, H.; Calkin, D.E.; Thompson, M.P. The influence of incident management teams on the deployment of wildfire suppression resources. Int. J. Wildland Fire 2017, 26, 615–629. [Google Scholar] [CrossRef]
- Holmes, T.P.; Calkin, D.E. Econometric analysis of fire suppression production functions for large wildland fires. Int. J. Wildland Fire 2013, 22, 246–255. [Google Scholar] [CrossRef]
- Katuwal, H.; Calkin, D.E.; Hand, M.S. Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis. J. Environ. Manag. 2016, 166, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Stonesifer, C.S.; Calkin, D.; Thompson, M.P.; Stockmann, K.D. Fighting fire in the heat of the day: An analysis of operational and environmental conditions of use for large airtankers in United States fire suppression. Int. J. Wildland Fire 2016, 25, 520–533. [Google Scholar] [CrossRef]
- Thompson, M.P.; Calkin, D.E.; Herynk, J.; McHugh, C.W.; Short, K.C. Airtankers and wildfire management in the U.S. Forest Service: Examining data availability and exploring usage and cost trends. Int. J. Wildland Fire 2013, 22, 223–233. [Google Scholar] [CrossRef]
- Thompson, M.P. Social, Institutional, and Psychological Factors Affecting Wildfire Incident Decision Making. Soc. Nat. Resour. 2014, 27, 636–644. [Google Scholar] [CrossRef]
- Thompson, M.P.; Freeborn, P.; Rieck, J.D.; Calkin, D.E.; Gilbertson-Day, J.W.; Cochrane, M.A.; Hand, M.S. Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: A case study of the Las Conchas Fire. Int. J. Wildland Fire 2016, 25, 167–181. [Google Scholar] [CrossRef]
- Wibbenmeyer, M.J.; Hand, M.S.; Calkin, D.E.; Venn, T.J.; Thompson, M.P. Risk preferences in strategic wildfire decision making: A choice experiment with U.S. Risk Anal. 2013, 33, 1021–1037. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.S.; Winter, P.L.; Maguire, L.A.; Ascher, T. Managing wildfire events: Risk-Based decision making among a group of federal fire managers. Risk Anal. 2011, 31, 805–818. [Google Scholar] [CrossRef] [PubMed]
- Gebert, K.M.; Black, A.E. Effect of suppression strategies on federal wildland fire expenditures. J. For. 2012, 110, 65–73. [Google Scholar] [CrossRef]
- Martell, D.L.; Sun, H. The impact of fire suppression, vegetation, and weather on the area burned by lightning-caused forest fires in Ontario. Can. J. For. Res. 2008, 38, 1547–1563. [Google Scholar] [CrossRef]
- Thompson, M.P.; Silva, F.R.; Calkin, D.E.; Hand, M.S. A review of challenges to determining and demonstrating efficiency of large fire management. Int. J. Wildland Fire 2017, 26, 562–573. [Google Scholar] [CrossRef]
- Finney, M.A.; Grenfell, I.C.; McHugh, C.W. Modeling containment of large wildfires using generalized linear mixed-model analysis. For. Sci. 2009, 55, 249–255. [Google Scholar]
- LANDFIRE. Existing Vegetation Type Layer, LANDFIRE 1.1.0. U.S. Department of Agriculture, Forest Service and U.S. Department of the Interior, U.S. Geologic Survey. 2008. Available online: http://www.landfire.gov/NationalProductDescriptions21.php (accessed on 10 March 2015).
- LANDFIRE. Fire regime group layer, LANDFIRE 1.1.0. U.S. Department of Agriculture, Forest Service and U.S. Department of the Interior, U.S. Geologic Survey. 2008. Available online: http://www.landfire.gov/NationalProductDescriptions12.php (accessed on 10 June 2015).
- Monitoring Trends in Burn Severity. National Burned Area Boundaries Dataset. 2015. Available online: http://www.mtbs.gov/nationalregional/intro.html (accessed on 18 March 2016).
- Finney, M.A.; U.S. Forest Service: Missoula, MT, USA. Personal Communication, 2016.
- Finney, M.A.; McHugh, C.W.; Grenfell, I.C.; Riley, K.L.; Short, K.C. A simulation of probabilistic wildfire risk components for the continental United States. Stoch. Environ. Res. Risk Assess. 2011, 25, 973–1000. [Google Scholar] [CrossRef]
- Haas, J.R.; Calkin, D.E.; Thompson, M.P. A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the United States. Landsc. Urban Plan. 2013, 119, 44–53. [Google Scholar] [CrossRef]
- Calkin, D.E.; Ager, A.A.; Thompson, M.P.; Finney, M.A.; Lee, D.C.; Quigley, T.M.; McHugh, C.W.; Riley, K.L.; Gilbertson-Day, J.M. A Comparative Risk Assessment Framework for Wildland Fire Management: The 2010 Cohesive Strategy Science Report; General Technical Report RMRS-GTR-262; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011.
- Andrews, P.L.; Loftsgaarden, D.O.; Bradshaw, L.S. Evaluation of fire danger rating indexes using logistic regression and percentile analysis. Int. J. Wildland Fire 2003, 12, 213–226. [Google Scholar] [CrossRef]
- Finney, M.A. Fire growth using minimum travel time methods. Can. J. For. Res. 2002, 32, 1420–1424. [Google Scholar] [CrossRef]
- Finney, M.A.; U.S. Forest Service: Missoula, MT, USA. Personal Communication, 2014.
- Grenfell, I.C.; Finney, M.A.; Jolly, W.M. Simulating spatial and temporally related fire weather. In Proceedings of the VI International Conference on Forest Fire Research, Coimbra, Portugal, 15–18 November 2010; Viegas, D., Ed.; University of Coimbra: Coimbra, Portugal, 2010. [Google Scholar]
- Fosberg, M.A.; Deeming, J.E. Derivation of the One-and Ten-Hour Timelag Fuel Moisture Calculations for Fire-Danger Rating; U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1971.
- Andrews, P.L. BEHAVE: Fire Behavior Prediction and Fuel Modeling System-BURN Subsystem, Part 1; General Technical Report INT-194; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1986.
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The 1978 National Fire-Danger Rating System: Technical Documentation; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1984.
- Jolly, W.M.; U.S. Forest Service: Missoula, MT, USA. Personal Communication, 2014.
- Riley, K.L.; Abatzoglou, J.T.; Grenfell, I.C.; Klene, A.E.; Heinsch, F.A. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: The role of temporal scale. Int. J. Wildland Fire 2013, 22, 894–909. [Google Scholar] [CrossRef]
- LANDFIRE. Homepage of the LANDFIRE Project, U.S. Department of Agriculture, Forest Service and U.S. Department of the Interior, U.S. Geologic Survey. Available online: http://www.landfire.gov/index.php (accessed on 10 March 2015).
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; General Technical Report RMRS-GTR-153; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005.
- Scott, J.H.; Thompson, M.P.; Gilbertson-Day, J.W. Exploring how alternative mapping approaches influence fireshed assessment and human community exposure to wildfire. GeoJournal 2015, 82, 201–215. [Google Scholar] [CrossRef]
- Short, K.C.; Grenfell, I.C.; Calkin, D.E.; Thompson, M.P. The need to rethink initial attack success as a metric for fire management. Int. J. Wildland Fire 2017, in press. [Google Scholar]
- Short, K.C. A spatial database of wildfires in the United States, 1992–2011. Earth Syst. Sci. Data 2014, 6, 1–27. [Google Scholar] [CrossRef]
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior; Research Paper RMRS-RP-29; USDA Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2001.
- Grenfell, I.C.; Short, K.C.; Riley, K.L.; U.S. Forest Service: Missoula, MT, USA. Personal Communication, 2016.
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Research Paper INT-115; USDA Forest Service Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972.
- Albini, F.A. Estimating Wildfire Behavior and Effects; General Technical Report INT-30; USDA Forest Service Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1976.
- Wilson, R.A. Reexamination of Rothermel’s Fire Spread Equations in No-Wind and No-Slope Conditions; Research Paper INT-434; USDA Forest Service Intermountain Research Station: Ogden, UT, USA, 1990.
- Scott, J.; Pyrologix LLC: Missoula, MT, USA. Personal Communication, 2016.
- Weglarczyk, S.; Strupczewski, W.G.; Singh, V.P. Three-parameter discontinuous distributions for hydrological samples with zero values. Hydrol. Process. 2005, 19, 2899–2914. [Google Scholar] [CrossRef]
- Parks, S.A.; Miller, C.; Holsinger, L.M.; Baggett, S.; Bird, B.J. Wildland fire limits subsequent fire occurrence. Int. J. Wildland Fire 2016, 25, 182–190. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Miller, C.; Nelson, C.R. Wildland fire as a self-regulating mechanism: The role of previous burns and weather in limiting fire progression. Ecol. Appl. 2015, 25, 1478–1492. [Google Scholar] [CrossRef] [PubMed]
- Malamud, B.D.; Turcotte, D.L. Self-organized criticality applied to natural hazards. Nat. Hazards 1999, 20, 93–116. [Google Scholar] [CrossRef]
- McKelvey, K.S.; Skinner, C.N.; Chang, C.; Et-man, D.C.; Husari, S.J.; Parsons, D.J.; van Wagtendonk, J.W.; Weatherspoon, C.P. An overview of fire in the Sierra Nevada. In Sierra Nevada Ecosystem Project: Final Report to Congress, Assessments and Scientific Basis for Management Options; University of California, Centers for Water and Wildland Resources: Davis, CA, USA, 1996; pp. 1033–1040. [Google Scholar]
- Caprio, A.C.; Swetnam, T.W. Historic fire regimes along an elevational gradient on the west slope of the Sierra Nevada, California. In Proceedings of the Symposium on Fire in Wilderness and Park Management: Past Lessons and Future Opportunities, Missoula, MT, USA, 30 March–1 April 1993; Brown, J.K., Mutch, R.W., Spoon, C.W., Wakimoto, R.H., Eds.; USDA Forest Service, Intermountain Research Station: Ogden, UT, USA, 1995. [Google Scholar]
- Meyer, M.D. Forest fire severity patterns of resource objective wildfires in the southern Sierra Nevada. J. For. 2015, 113, 49–56. [Google Scholar] [CrossRef]
- Beaty, R.M.; Taylor, A.H. Fire history and the structure and dynamics of a mixed conifer forest landscape in the northern Sierra Nevada, Lake Tahoe Basin, California, USA. For. Ecol. Manag. 2008, 255, 707–719. [Google Scholar] [CrossRef]
- Collins, B.M.; Everett, R.G.; Stephens, S.L. Impacts of fire exclusion and recent managed fire on forest structure in old growth Sierra Nevada mixed-conifer forests. Ecosphere 2011, 2. [Google Scholar] [CrossRef]
- Thompson, M.P.; Riley, K.L.; Loeffler, D.; Haas, J.R. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts. Forests 2017, 8, 469. [Google Scholar] [CrossRef]
- Spies, T.A.; White, E.; Ager, A.; Kline, J.D.; Bolte, J.P.; Platt, E.K.; Olsen, K.A.; Pabst, R.J.; Barros, A.M.G.; Bailey, J.D.; et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol. Soc. 2017, 22, 25. [Google Scholar] [CrossRef]
- Larsen, A.J.; Belote, T.R.; Cansler, C.A.; Parks, S.A.; Dietz, M.S. Latent resilience in ponderosa pine forest: Effects of resumed frequent fire. Ecol. Appl. 2013, 23, 1243–1249. [Google Scholar] [CrossRef]
- Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L. Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landsc. Ecol. 2007, 22, 545–557. [Google Scholar] [CrossRef]
- Barnett, K.; Miller, C.; Venn, T.J. Using Risk Analysis to Reveal Opportunities for the Management of Unplanned Ignitions in Wilderness. J. For. 2016, 114, 610–618. [Google Scholar] [CrossRef]
- Scott, J.H.; Helmbrecht, D.; Parks, S.; Miller, C. Quantifying the threat of unsuppressed wildfires reaching the adjacent wildland-urban interface on the Bridger-Teton National Forest, Wyoming, USA. Fire Ecol. 2012, 8, 125–142. [Google Scholar] [CrossRef]
- Naficy, C.; Sala, A.; Keeling, E.G.; Graham, J.; DeLuca, T.H. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies. Ecol. Appl. 2010, 20, 1851–1864. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- National Interagency Fire Center. Wildland Fire Fatalities by Year. Available online: https://www.nifc.gov/safety/safety_documents/Fatalities-by-Year.pdf (accessed on 30 October 2016).
- Babbitt, B. A Coordinated Campaign: Fight Fire with Fire; Remarks at Boise State University: Boise, ID, USA, 1997. [Google Scholar]
Metric | Observed, All Causes | Observed, Human-Caused Fires | Observed, Lightning Fires | Scenario 1 | Modeled, Human-Caused Large Fires | Modeled, All Lightning Fires | Scenario 2 |
---|---|---|---|---|---|---|---|
Number of large fires | 9.1 | 5.1 | 4.1 | 8.4 | 6.1 | 34.1 | 38.6 |
Median large-fire size (ha) | 309 | 259 | 432 | 395 | 415 | 2245 | 1719 |
Mean large-fire size (ha) | 1372 | 1632 | 1047 | 1301 | 1401 | 15,220 | 13,561 |
Mean annual area burned by large fires igniting in the Sierra National Forest (ha) | 12,472 | 8234 | 4238 | 10,928 | 8546 | 519,002 | 523,455 |
Mean burn probability for Sierra National Forest | 0.0053 | 0.0036 | 0.0018 | 0.0048 | 0.0026 | 0.1741 | 0.1751 |
Metric | Observed, All Causes | Observed, Human-Caused Fires | Observed, Lightning Fires | Modeled, Large Fires (Scenario 1, Overburn Removed) | Modeled, Human-Caused Large Fires (Scenario 2) | Modeled, All Lightning Fires (Scenario 2) |
---|---|---|---|---|---|---|
Number of large fires/year | 9.1 | 5.1 | 4.1 | 8.4 | 6.1 | 34.1 |
Total number of fires | 556.4 | 431.8 | 124.5 | 556.4 | 431.8 | 124.5 |
Percent which are large fires | 1.6% | 1.2% | 3.3% | 1.5% | 1.4% | 27.4% |
Feedback Type | Metric | Summary Statistic | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|---|---|
NB = 5 Years | NB = 10 Years | NB = 5 Years | NB = 10 Years | |||
Without feedbacks | area burned (ha) | Min. | 0 | 0 | 0 | 0 |
1st Q. | 0 | 0 | 6287 | 6833 | ||
Median | 571 | 529 | 39,153 | 41,793 | ||
Mean | 2457 | 2367 | 119,663 | 122,686 | ||
3rd Q. | 2466 | 2378 | 162,439 | 164,937 | ||
Max. | 78,402 | 78,402 | 3,271,611 | 3,271,611 | ||
Type 1 | % of cases affected | 7 | 12 | 91 | 94 | |
avoided area burned (ha) | Median | 0 | 0 | 22,188 | 32,487 | |
Mean | 89 | 174 | 67,163 | 83,540 | ||
avoided area burned (proportion) * | Min. | 0 | 0 | 0 | 0 | |
1st Q. | 0 | 0 | 45 | 66 | ||
Median | 0 | 0 | 71 | 83 | ||
Mean | 3 | 7 | 64 | 78 | ||
3rd Q. | 0 | 0 | 90 | 96 | ||
95th Perc. | 20 | 57 | 100 | 100 | ||
Max. | 100 | 100 | 100 | 100 | ||
Type 2 | % of cases affected | 27 | 37 | 94 | 95 | |
avoided area burned (ha) | Median | 0 | 0 | 30,345 | 39,892 | |
Mean | 148 | 289 | 100,476 | 117,185 | ||
avoided area burned (proportion) * | Min. | −10 | −7 | 0 | 0 | |
1st Q. | 0 | 0 | 72 | 96 | ||
Median | 0 | 0 | 93 | 99 | ||
Mean | 5 | 10 | 81 | 95 | ||
3rd Q. | 1 | 8 | 100 | 100 | ||
95th Perc. | 34 | 65 | 100 | 100 | ||
Max. | 100 | 100 | 100 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riley, K.L.; Thompson, M.P.; Scott, J.H.; Gilbertson-Day, J.W. A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies. Resources 2018, 7, 4. https://doi.org/10.3390/resources7010004
Riley KL, Thompson MP, Scott JH, Gilbertson-Day JW. A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies. Resources. 2018; 7(1):4. https://doi.org/10.3390/resources7010004
Chicago/Turabian StyleRiley, Karin L., Matthew P. Thompson, Joe H. Scott, and Julie W. Gilbertson-Day. 2018. "A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies" Resources 7, no. 1: 4. https://doi.org/10.3390/resources7010004
APA StyleRiley, K. L., Thompson, M. P., Scott, J. H., & Gilbertson-Day, J. W. (2018). A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies. Resources, 7(1), 4. https://doi.org/10.3390/resources7010004