Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?
Abstract
:1. Introduction
2. Availability and Mineral Processing
2.1. Copper
2.2. Lead-Zinc
2.3. Gold
3. Methodology and Data Sources
- Anglo American (AA). Sustainability Reports; Anglo American PLC: London, UK, 2002–2014.
- Antofagasta Minerals. Annual Reports, Sustainability Report; Antofagasta Minerals: Santiago, Chile, 2005–2014.
- Barrick. Sustainability Reports; Barrick: Toronto, ON, Canada, 2006–2012.
- BHP Billiton (BHPB). Annual Reports, Sustainability Reports; BHP Billiton (BHPB): Melbourne, Australia, 2005–2014.
- CODELCO. Sustainability Reports; CODELCO: Santiago, Chile, 2000–2014.
- First Quantum Minerals. Annual Reports, Sustainability Reports; First Quantum Minerals: Toronto, ON, Canada, 2009–2013.
- Gold Fields Limited. Sustainability Reports; Gold Fields Limited: Johannesburg, South Africa, 2006–2013.
- Río Tinto. Sustainability Reports; Río Tinto: London, UK, 2000–2007.
- Lundin Mining. Financial Reports, Sustainability Reports; Lundin Mining: Toronto, ON, Canada, 2007–2014.
- Milpo. Annual Reports, Sustainability Reports; Milpo: Lima, Peru, 2008–2013.
- MMG Limited. Financial Reports, Sustainability Reports; MMG Limited: Southbank, Australia, 2009–2014.
- Newcrest Mining Limited. Annual Reports, Sustainability Reports; Newcrest Mining Limited: Melbourne, Australia, 2006–2014.
- OZ minerals (OZM). Financial Reports, Sustainability Reports; OZ minerals (OZM): Melbourne, Australia, 2008–2014.
- Xstrata—Glencore. Annual Reports, Sustainability Reports; Xstrata—Glencore: London, UK, 2001–2014.
- Ore milled
- Contained mineral or metal production
- Average ore grade
- Electricity and diesel use
- Waste rock
4. Energy Intensity Factors
- (a)
- Electricity use (kWh per tonne of total ore mined) as a function of ore grade
- (b)
- Litres of diesel per tonne of rock (including waste rock and ore) as a function of ore grade (note that underground rarely report waste rock extracted)
- (c)
- Total energy consumption (GJ per tonne metal), excluding explosives forces.
5. Ore Grade and Energy Consumption
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kippenberger, C. Materials Flow and Energy Required for the Production of Selected Mineral Commodities—Summary and Conclusions (Geologisches Jahrbuch); Schweizerbart: Stuttgart, Germany, 2001. [Google Scholar]
- USGS. Mineral Commodity Summaries 2015; United States Geological Service: San Antonio, TX, USA, 2015.
- Krausmann, F.; Gingrich, S.; Eisenmenger, N.; Erb, K.; Haberl, H.; Fischer-Kowalski, M. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 2009, 68, 2696–2705. [Google Scholar] [CrossRef]
- Meinert, L.; Robinson, G.; Nassar, N. Mineral Resources: Reserves, Peak Production and the Future. Resources 2016, 5, 14. [Google Scholar] [CrossRef]
- International Energy Agency. International Energy Outlook; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Mudd, G. Global trends in gold mining: Towards quantifying environmental and resource sustainability. Resour. Policy 2007, 32, 42–56. [Google Scholar] [CrossRef]
- Mudd, G. Key trends in the resource sustainability of platinum group elements. Ore Geol. Rev. 2012, 46, 106–117. [Google Scholar] [CrossRef]
- Mudd, G. The future of Yellowcake: A global assessment of uranium resources and mining. Sci. Total Environ. 2014, 472, 590–607. [Google Scholar] [CrossRef]
- Northey, S.; Mohr, S.; Mudd, G.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Drielsma, J.A.; Allington, R.; Brady, T.; Guinée, J.; Hammarstrom, J.; Hummen, T.; Russell-Vaccari, A.; Schneider, L.; Sonnemann, G.; Weihed, P. Abiotic raw-materials in life cycle impact assessments: An emerging consensus across disciplines. Resources 2016, 5, 12. [Google Scholar] [CrossRef]
- Drielsma, J.A.; Russell-Vaccari, A.; Drnek, T.; Brady, T.; Weihed, P.; Mistry, M.; Simbor, L.P. Mineral resources in life cycle impact assessment—Defining the path forward. Int. J. Life Cycle Assess. 2015, 21, 85–105. [Google Scholar] [CrossRef]
- West, J. Decreasing Metal Ore Grades: Are They Really Being Driven by the Depletion of High-Grade Deposits? J. Ind. Ecol. 2011, 15, 165–168. [Google Scholar] [CrossRef]
- Mudd, G.M.; Jowitt, S.M. A detailed assessment of global nickel resource trends and endowments. Econ. Geol. 2014, 109, 1813–1841. [Google Scholar] [CrossRef]
- Swart, P.; Dewulf, J. Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data. Resour. Conserv. Recycl. 2013, 73, 180–187. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2016; United States Geological Service: San Antonio, TX, USA, 2016.
- Sverdrup, H.; Ragnarsdottir, K.V.; Koca, D. On modelling the global copper mining rates, market supply, copper price and the end of copper reserves. Resour. Conserv. Recycl. 2014, 87, 158–174. [Google Scholar] [CrossRef]
- Mudd, G.; Weng, Z. Base Metals. In Materials for a Sustainable Future; Letcher, T.M., Scott, J.L., Eds.; Royal Society of Chemistry: London, UK, 2012. [Google Scholar]
- Mudd, G. The Ultimate Sustainability of Mining. Linking Key Mega-Trends with 21st Century Challenges. In Proceedings of the Sustainable Mining Conference, Kalgoorlie, WA, USA, 17–19 August 2010.
- Mudd, G.; Weng, Z.; Jowitt, S. A Detailed Assessment of Global Cu Resource Trends and Endowments. Econ. Geol. 2013, 108, 1163–1183. [Google Scholar] [CrossRef]
- Gordon, R.B.; Bertram, M.; Graedel, T. Metal stocks and sustainability. Proc. Natl. Acad. Soc. USA 2006, 103, 1209–1214. [Google Scholar] [CrossRef]
- Valero, A.; Valero, A. Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion. Resour. Conserv. Recycl. 2010, 54, 1074–1083. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Ragnarsdottir, K.; Koca, D. An assessment of metal supply sustainability as an input to policy: Security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity. J. Clean. Prod. 2015, 140, 359–372. [Google Scholar] [CrossRef]
- Laherrère, J.H. Copper peak. The oildrum Europe 2010, 6307, 1–27. [Google Scholar]
- Valero, A.; Valero, A. A prediction of the exergy loss of the world’s mineral reserves in the 21st century. Energy 2011, 36, 1848–1854. [Google Scholar] [CrossRef]
- Ayres, R.U.; Ayres, L.W.; Rade, I. The Life Cycle of Copper, Its Co-Products and Byproducts; Technical Report; International Institute for Environment and Development (IIED): London, UK, 2002. [Google Scholar]
- Ullmann, F.; Gerhartz, V. Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley and Sons: Hoboken, Belgium, 2002. [Google Scholar]
- Schlesinger, M.; King, M.; Sole, K.; Davenport, W. Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Valero, A.; Valero, A. Thanatia: The Destiny of the Earth’s Mineral Resources: A Thermodynamic Cradle-to-Cradle Assessment; World Scientific Publishing Company: Singapore, 2014. [Google Scholar]
- Cox, D.P.; Singer, D.A. (Eds.) Mineral Deposit Models; US Geological Survey: Lawrence, KA, USA, 1992.
- Mudd, G.M. Historical trends in base metal mining: Backcasting to understand the sustainability of mining. In Proceedings of the 48th Annual Conference on Metallurgists, Canadian Metallurgical Society, Sudbury, ON, Canada, 23–26 August 2009.
- Sverdrup, H.U.; Ragnarsdottir, K.V. Natural resources in a planetary perspective. Geochem. Perspect. 2014, 3, 129–341. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Energy and Environmental Profile of the U.S. Mining Industry; U.S. Department of Energy: Washington, DC, USA, 2002.
- Norgate, T.E.; Jahanshashi, S.; Rankin, W. Assessing the environmental impact of metal production processes. J. Clean. Prod. 2007, 15, 838–848. [Google Scholar] [CrossRef]
- Grimes, S.; Jonaldson, J.; Cebrian Gomez, C. Report on the Environmental Benefits of Recycling; Tech. Report; Centre for Sustainable Production & Resource Efficiency (CSPRE), Imperial College London, Commissioned by the Bureau of International Recycling: London, UK, 2008. [Google Scholar]
- Sverdrup, H.; Koca, D.; Granath, C. Modeling the gold market, explaining the past and assessing the physical and economical sustainability of future scenarios. In Proceedings of the 30th International Conference of the System Dynamics Society, University of St. Gallen, St. Gallen, Switzerland, 22–26 July 2012; Husemann, E., Lane, D., Eds.; pp. 4002–4023.
- World Gold Council. Available online: http://www.gold.org/ (accessed on 30 10 2016).
- Veiga, M.M.; Angeloci, G.; Hitch, M.; Colon Velasquez-Lopez, P. Processing centres in artisanal gold mining. J. Clean. Prod. 2014, 64, 535–544. [Google Scholar] [CrossRef]
- Global Reporting Initiative (GRI). Sustainability Reporting Guidelines; Global Reporting Initiative (GRI): Amsterdam, The Netherlands, 2006. [Google Scholar]
- Global Reporting Initiative (GRI). Sustainability Reporting Guidelines & Mining and Metals Sector Supplement; Global Reporting Initiative (GRI): Amsterdam, The Netherlands, 2011. [Google Scholar]
- Northey, S.; Haque, N.; Mudd, G. Using sustainability reporting to assess the environmental footprint of copper mining. J. Clean. Prod. 2013, 40, 118–128. [Google Scholar] [CrossRef]
- Domínguez, A.; Valero, A. Global gold mining: Is technological learning overcoming the decline in ore grades? J. Environ. Acc. Manag. 2013, 1, 85–101. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2010; United States Geological Service: San Antonio, TX, USA, 2010.
- Mudd, G.M. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future; Research Report No RR5; Department of Civil Engineering, Monash University and Mineral Policy Institute: Melbourne, Australia, 2009. [Google Scholar]
Mine | Company | Main Metals | Mine Type | Mine Process | 2013 Production of Main Metal (t) | Average kWh/t Ore | Average L Diesel/t Rock | Period Reported |
---|---|---|---|---|---|---|---|---|
Australia | ||||||||
Granny Smith | Goldfields | Au | OC + UG | MCL | 7185 (kg) | 199 ± 141 (18) | 2.5 ± 1.9 (18) | 1989–2013 |
Agnew | Goldfields | Au | OC + UG | MCL | 6718 (kg) | 43 ± 14 (14) | 0.6 ± 0.4 (5) | 1991–2009 |
St Ives | Goldfields | Au | OC + UG | MCL | 12,533 (kg) | 31 ± 6 (14) | 1.5 ± 0.6 (6) | 1991–2009 |
Darlot | Goldfields | Au | UG | MCL | 2482 (kg) | 80 (1) | - | 1993–2007 |
Cadia Valley | Newcrest Mining | Cu-Au | OC | MS | 56,971 (2) | 53 ± 4 (6) | - | 2004–2009 |
Ernest Henry | Glencore | Cu-Au | OC | MC | 35,562 (2) | 49 ± 7 (6) | - | 1998–2007 |
Mount Isa (Cu) | Glencore | Cu-Ag | UG | MCS | 142,705 (1) | 81 ± 34 (6) | 1.1 (1) | 2005–2012 |
Osborne | Barrick | Cu-Au | OC + UG | MC | 41,270 (2) | - | - | - |
Prominent Hill | OZ Minerals | Cu-Ag | OC | MC | 73,362 | 64 ± 25 (6) | 0.5 ± 0.2 (6) | 2009–2014 |
Olympic Dam | BHP Billiton | Cu-U-Ag-Au | UG | MCSRL | 166,200 | 107 ± 23 (17) | 2.8 ± 0.6 (17) | 1991–2014 |
Telfer | Newcrest Mining | Cu-Au | OC + UG | MC | 32,906 (2) | 124 ± 13 | - | 2005–2009 |
Cannington | BHP Billiton | Pb-Ag | UG | MC | 210,815 (3) | - | - | - |
McArthur River | Glencore | Zn-Pb-Ag | OC + UG | MC | 203,300 | 60 ± 5 (5) | - | 2006–2010 |
Century | MMG | Zn-Pb-Ag | OC | MC | 488,233 | 120 ± 35 (7) | - | 2009–2014 |
Golden Grove | MMG | Zn-Cu-Ag-Au | UG | MC | 23,619 | 55 ± 7 (7) | - | 2009–2014 |
Rosebery | MMG | Zn-Pb-Cu-Ag-Au | UG | MC | 88,369 | 62 ± 12 (7) | - | 2009–2014 |
Chile | ||||||||
Mantos Blancos | AngloAmerican | Cu | OC | MCSL | 54,600 | 15 ± 3 (10) | - | 2002–2014 |
El Soldado | AngloAmerican | Cu | OC + UG | MCL | 51,500 | 28 ± 7 (11) | 0.4 ± 0.2 (4) | 2002–2014 |
Mantoverde | AngloAmerican | Cu | OC | ML | 56,800 | 12 ± 2 (11) | 0.7 ± 0.8 (4) | 2002–2014 |
El Tesoro | Antofagasta Minerals | Cu | OC | MCL | 102,600 | 31 ± 7 (7) | 0.3 ± 0.1 (5) | 2007–2014 |
Michilla | Antofagasta Minerals | Cu | OC + UG | MCL | 38,300 | 34 ± 2 (5) | 0.5 ± 0.2 (4) | 2007–2014 |
Escondida | BHP Billiton | Cu | OC | MCL | 1,193,680 | 31 ± 13 (12) | 0.7 ± 0.3 (12) | 2001–2014 |
Radomiro Tomic | CODELOCL | Cu | OC | MCL | 379,589 | 13 ± 1 (3) | 1.5 (1) | 2011–2013 |
Collahuasi | AngloAmerican and Glencore | Cu-Mo | OC | MCL | 444,509 | 20 ± 1 (10) | 1.4 ± 1.1 (10) | 2002–2014 |
Los Pelambres | Antofagasta Minerals | Cu-Mo | OC | MCL | 405,300 | 27 ± 10 (8) | 0.4 ± 0.1 (8) | 2007–2014 |
Chuquicamata | CODELCO | Cu-Mo | OC | MCSL | 339,012 | 46 ± 1 (3) | 1.2 ± 0.2 (2) | 2000–2013 |
Los Bronces | AngloAmerican | Cu-Mo | OC | MCSL | 416,300 | 20 ± 8 (11) | 0.9 ± 0.6 (7) | 2002–2014 |
División Andina | CODELCO | Cu-Mo-Ag | OC + UG | MC | 236,715 | 25 ± 3 (12) | 1.9 ± 2.2 (9) | 2001–2013 |
Salvador | CODELCO | Cu-Mo-Ag-Au | OC + UG | MSCL | 54,242 | 34 ± 6 (12) | 0.8 ± 0.3 (9) | 2001–2013 |
El Teniente | CODELCO | Cu-Mo-Ag-Au | UG | MCS | 450,390 | 39 ± 4 (12) | - | 2001–2013 |
Laos | ||||||||
Sepon | MMG | Cu-Au | OC | ML | 90,030 | 100 ± 40 (7) | 2.3 ± 0.8 (4) | 2008–2014 |
Peru | ||||||||
El Porvenir | Milpo | Zn-Pb-Cu | UG | MC | 117,628 | 53 ± 3 (2) | - | 2008–2013 |
Cerro Lindo | Milpo | Zn-Pb-Cu | UG | MC | 278,234 | 29 ± 4 (2) | - | 2008–2013 |
Antamina | BHP Billiton, Glencore, Teck | Zn-Cu-Mo (Ag,Pb) | OC | MCL | 73,913 (1) | |||
Portugal | ||||||||
Neves-Corvo | Lundin Mining | Zn-Cu-Pb-Ag | UG | MC | 53,385 | 71 ± 6 (7) | 0.6 ± 0.1 (6) | 2007–2014 |
Spain | ||||||||
Aguablanca | Lunding Mining | Ni-Cu | OC | MC | 6242 | 44 ± 12 (7) | 0.5 ± 0.1 (5) | 2007–2014 |
Sweden | ||||||||
Zinkgruvan | Lundin Mining | Zn-Pb-Cu-Ag | UG | MC | 71,366 | 75 ± 7 (6) | 1.0 ± 1.0 (6) | 2007–2014 |
United States | ||||||||
Bingham Canyon | Rio Tinto | Cu-Au | OC | MCSR | 212,200 (3) | 112 ± 7 (5) | - | 2003–2007 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources 2016, 5, 36. https://doi.org/10.3390/resources5040036
Calvo G, Mudd G, Valero A, Valero A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources. 2016; 5(4):36. https://doi.org/10.3390/resources5040036
Chicago/Turabian StyleCalvo, Guiomar, Gavin Mudd, Alicia Valero, and Antonio Valero. 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?" Resources 5, no. 4: 36. https://doi.org/10.3390/resources5040036
APA StyleCalvo, G., Mudd, G., Valero, A., & Valero, A. (2016). Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources, 5(4), 36. https://doi.org/10.3390/resources5040036