Evaluation of Abiotic Resource LCIA Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Operational Resource-Based LCIA Methods
2.1.1. Resource Accounting Methods (RAM)
CED
CExD
CEENE
SED
MIPS
LREx
ICEC/ECEC
EF
2.1.2. Midpoint LCIA Methods
ADP
EDIP
Recipe Midpoint
ORI
AADP
OGD
2.1.3. Endpoint LCIA Methods
Eco-Indicator 99
Recipe Endpoint
EPS2000
SuCo
Exergoecology
2.2. Case Study
2.2.1. RAM
2.2.2. Midpoint
2.2.3. Endpoint
2.2.4. Discussion
2.3. Recommendation of Abiotic Resource LCIA Methods
2.4. Future Challenges and New Trends
3. Experimental Section
- A traditional FE, which was based on the data in the ecoinvent [55] dataset named “ethylene, average (RER) production, Alloc Def” (There is no dataset in ecoinvent for Brazilian ethylene). The inputs and outputs in this dataset are arranged as aggregated LCI; thus, it is not possible to clearly identify the life cycle stage of each elementary flow;
- A BE, from Brazil, where sugarcane is produced to generate ethanol, that is further dehydrated into ethylene. Therefore, Cavalett et al. [56] was used for sugarcane and ethanol data and the Swedish Life Cycle Center (CPM) database [57] for the ethanol-to-ethylene process unit. Sugarcane and ethanol production considered in reference [56] is from advanced technologic cultivation and production systems, from the state of São Paulo (Brazil). The ethanol-to-ethylene process unit is based on pilot scale data.
4. Conclusions
Conflicts of Interest
References
- MEA. Ecosystem and Human Well-Being: The Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2015. [Google Scholar]
- Swart, P.; Alvarenga, R.A.F.; Dewulf, J. Abiotic resource use. In LCA Compendium—The Complete World of Life Cycle Assessment: Life Cycle Impact Assessment, 1st ed.; Hauschild, M., Huijbregts, M.A.J., Eds.; Springer Press: Dordrecht, The Netherlands, 2015; Volume 4, pp. 247–269. [Google Scholar]
- European Commission Joint Research Centre. International Reference Life Cycle Data System (ILCD) Handbook—Recommendations for Life Cycle Assessment in the European Context; Publications Office of the European Union: Luxembourg, Luxembourg, 2011. [Google Scholar]
- Müller-Wenk, R. Depletion of Abiotic Resources Weighted on the Base of 'Virtual' Impacts of Lower Grade Deposits in Future; IWO Diskussionsbeitrag Nr. 57; Universität St. Gallen: St. Gallen, Switzerland, 1998. [Google Scholar]
- Stewart, M.; Weidema, B.P. A consistent framework for assessing the impacts from resource use—A focus on resource functionality (8 pp). Int. J. Life Cycle Assess. 2005, 10, 240–247. [Google Scholar] [CrossRef]
- Robech, J.T.; Vadenbo, C.; Hellweg, S.; Astrup, T.F. Impact assessment of abiotic resources in LCA: Quantitative comparison of selected characterization models. Environ. Sci. Technol. 2014, 48, 11072–11081. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.; Benini, L.; Mancini, L.; Sala, S.; Blengini, G.A.; Ardente, F.; Recchioni, M.; Maes, J.; Pant, R.; Pennington, D. Rethinking the area of protection “natural resources” in life cycle assessment. Environ. Sci. Technol. 2015, 49, 5310–5317. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Heijungs, R.; Huppes, G. Thermodynamic resource indicators in LCA: A case study on the titania produced in Panzhihua city, southwest China. Int. J. Life Cycle Assess. 2012, 17, 951–961. [Google Scholar] [CrossRef]
- Dewulf, J.; Bosch, M.E.; Meester, B.D.; Vorst, G.V.D.; Langenhove, H.V.; Hellweg, S.; Huijbregts, M.A.J. Cumulative exergy extraction from the natural environment (CEENE): A comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 2007, 41, 8477–8483. [Google Scholar] [CrossRef] [PubMed]
- Rugani, B.; Huijbregts, M.A.J.; Mutel, C.; Bastianoni, S.; Hellweg, S. Solar energy demand (SED) of commodity life cycles. Environ. Sci. Technol. 2011, 45, 5426–5433. [Google Scholar] [CrossRef] [PubMed]
- Guinée, J. Development of a Methodology for the Environmental Life-Cycle Assessment of Products. PhD dissertation, Leiden University, Leiden, The Netherlands, 2 March 1995. [Google Scholar]
- Life Cycle Impact Assessment Programme. Available online: http://www.lifecycleinitiative.org/activities/phase-i/life-cycle-impact-assessment-programme/ (accessed on 25 January 2016).
- Hischier, R.; Weidema, B.; Althaus, H.-J.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; Loerincik, Y.; et al. Implementation of Life Cycle Impact Assessment Methods: Final Report Ecoinvent v2.1.; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, 2009; Volume 3. [Google Scholar]
- Boustead, I.; Hancock, G.F. Handbook of Industrial Energy Analysis; Ellis Horwood Ltd.: New York, NY, USA, 1979. [Google Scholar]
- Pimentel, D.; Hurd, L.E.; Bellotti, A.C.; Forster, M.J.; Oka, I.N.; Sholes, O.D.; Whitman, R.J. Food production and the energy crisis. Science 1973, 182, 443–449. [Google Scholar] [CrossRef] [PubMed]
- VDI. Cumulative Energy Demand—Terms, Definitions, Methods of Calculation; VDI guideline 4600; Verein Deutscher Ingenieure: Dusseldorf, Germany, 1997. [Google Scholar]
- Frischknecht, R.; Wyss, F.; Knöpfel, S.B.; Lützkendorf, T.; Balouktsi, M. Cumulative energy demand in LCA: The energy harvested approach. Int. J. Life Cycle Assess. 2015, 20, 957–969. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Rombouts, L.J.A.; Hellweg, S.; Frischknecht, R.; Hendriks, A.J.; van de Meent, D.; Ragas, A.M.J.; Reijnders, L.; Struijs, J. Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ. Sci. Technol. 2006, 40, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, M.A.J.; Hellweg, S.; Frischknecht, R.; Hendriks, H.W.M.; Hungerbuhler, K.; Hendriks, A.J. Cumulative energy demand as predictor for the environmental burden of commodity production. Environ. Sci. Technol. 2010, 44, 2189–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarenga, R.A.F. Environmental Sustainability of Biobased Products: New Assessment Methods and Case Studies. PhD Dissertation, Ghent University, Ghent, Belgium, 13 June 2013. [Google Scholar]
- Alvarenga, R.A.F.; Dewulf, J.; Langenhove, H.; Huijbregts, M.A.J. Exergy-based accounting for land as a natural resource in life cycle assessment. Int. J. Life Cycle Assess. 2013, 18, 939–947. [Google Scholar] [CrossRef]
- Bösch, M.; Hellweg, S.; Huijbregts, M.; Frischknecht, R. Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int. J. Life Cycle Assess. 2007, 12, 181–190. [Google Scholar] [CrossRef]
- Dewulf, J.; Van Langenhove, H.; Muys, B.; Bruers, S.; Bakshi, B.R.; Grubb, G.F.; Paulus, D.M.; Sciubba, E. Exergy: Its potential and limitations in environmental science and technology. Environ. Sci. Technol. 2008, 42, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making, 1st ed.; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Rugani, B.; Benetto, E. Improvements to emergy evaluations by using life cycle assessment. Environ. Sci. Technol. 2012, 46, 4701–4712. [Google Scholar] [CrossRef] [PubMed]
- Ingwersen, W. Emergy as a life cycle impact assessment indicator. J. Ind. Ecol. 2011, 15, 550–567. [Google Scholar] [CrossRef]
- Schmidt-Bleek, F. The Fossil Makers; Birkhäuser: Basel, Boston, Berlin, 1993. [Google Scholar]
- Ritthoff, M.; Rohn, H.; Liedtke, C. MIPS BErechnen: Ressourcen Produktivität von Produkten und Dienstleistungen; Wuppertal Spezial, Wuppertal Institutfür Klima, Umwelt und Energie 27; Visualisation Lab Wuppertal Institut: Wuppertal, Germany, 2002. [Google Scholar]
- Saurat, M.; Ritthoff, M. Calculating MIPS 2.0. Resources 2013, 2, 581–607. [Google Scholar] [CrossRef]
- Wiesen, K.; Saurat, M.; Lettenmeier, M. Calculating the material input per service unit using the ecoinvent database. Int. J. Perform. Eng. 2014, 10, 357–366. [Google Scholar]
- Hau, J.L.; Bakshi, B.R. Expanding exergy analysis to account for ecosystem products and services. Environ. Sci. Technol. 2004, 38, 3768–3777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Baral, A.; Bakshi, B.R. Accounting for ecosystem services in life cycle assessment, Part II: Toward an ecologically based LCA. Environ. Sci. Technol. 2010, 44, 2624–2631. [Google Scholar] [CrossRef] [PubMed]
- Szargut, J.; Morris, D.R.; Steward, F.R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes; Springer: Berlin, Germany, 1998. [Google Scholar]
- Wackernagel, M.; Rees, W. Our Ecological Footprint: Reducing Human Impact on the Earth; NSP: Gabriola Island, BC, Canada, 1998. [Google Scholar]
- Huijbregts, M.A.J.; Hellweg, S.; Frischknecht, R.; Hungerbuhler, K.; Hendriks, A.J. Ecological footprint accounting in the life cycle assessment of products. Ecol. Econ. 2008, 64, 798–807. [Google Scholar] [CrossRef]
- van Oers, L.; de Koning, A.; Guinee, J.; Huppes, G. Abiotic Resource Depletion in LCA—Improving Characterization Factors for Abiotic Resource Depletion as Recommended in the New Dutch LCA Handbook; Road and Hydraulic Engineering Institute: Leiden, The Netherlands, 2002. [Google Scholar]
- Hauschild, M.; Wenzel, H. Environmental Assessment of Products: Scientific background; Chapman & Hall: London, UK, 1998; Volume 2. [Google Scholar]
- Klinglmair, M.; Sala, S.; Brandão, M. Assessing resource depletion in LCA: A review of methods and methodological issues. Int. J. Life Cycle Assess. 2014, 18, 580–592. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; de Schryver, A.; Struijs, J.; van Zelm, R. ReCiPe 2008—A life Cycle Impact Assessment Method which Comprises Harmonized Category Indicators at the Midpoint and the Endpoint Level, 1st ed.; Report I: Charaterisation; Ministry of Housing, Spatial Planning and the Environment (VROM): The Hague, The Netherlands, 2009. [Google Scholar]
- Swart, P.; Dewulf, J. Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data. Resour. Conserv. Recycl. 2013, 73, 180–187. [Google Scholar] [CrossRef]
- Schneider, L.; Berger, M.; Finkbeiner, M. The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int. J. Life Cycle Assess. 2011, 16, 929–936. [Google Scholar] [CrossRef]
- Schneider, L.; Berger, M.; Finkbeiner, M. Abiotic resource depletion in LCA—Background and update of the antropogenic stock extended abiotic depletion potential (AADP) model. Int. J. Life Cycle Assess. 2015, 20, 709–721. [Google Scholar] [CrossRef]
- Vieira, M.D.M.; Goedkoop, M.J.; Storm, P.; Huijbregts, M.A.J. Ore grade decrease as life cycle impact indicator for metal scarcity: The case of copper. Environ. Sci. Technol. 2012, 46, 12772–12778. [Google Scholar]
- Goedkoop, M.; Spriensma, R. The Eco-Indicator 99—A Damage Oriented Method for Life Cycle Impact Assessment: Methodology Report; PRé Consultants: Amersfoort, The Netherlands, 2000. [Google Scholar]
- Chapman, P.F.; Roberts, F. Metal Resources and Energy; Butterworths Monographs in Materials: London, UK, 1983. [Google Scholar]
- Ponsioen, T.C.; Vieira, M.D.M.; Goedkoop, M.J. Surplus cost as a life cycle impact indicator for fossil resource scarcity. Int. J. Life Cycle Assess. 2014, 19, 872–881. [Google Scholar] [CrossRef]
- Steen, B. A Systematic Approach to Environmental Priority Strategies in Product Development (EPD). Version 2000—General System Characteristics; CPM report. Nr. 4; Centre for Environmental Assessment of Products and Material Systems, Chalmers University of Technology, Technical Environmental Planning. Chalmers University of Technology: Gothenburg, Sweden, 1999. [Google Scholar]
- Steen, B. A Systematic Approach to Environmental Priority Strategies in Product Development (EPD). Version 2000—Models and Data of the Default Method; CPM report. Nr. 5; Centre for Environmental Assessment of Products and Material Systems, Chalmers University of Technology, Technical Environmental Planning. Chalmers University of Technology: Gothenburg, Sweden, 1999. [Google Scholar]
- Ponsioen, T.; PRé Consultants, Amersfoort, The Netherlands. Personal communication. 7 August 2015. [Google Scholar]
- Valero, A.; Valero, A. Exergoecology: A thermodynamic approach for accounting the earth’s mineral capital. The case of bauxite-aluminium and limestone-lime chains. Energy 2010, 35, 229–238. [Google Scholar]
- Valero, A.; Valero, A. From grave to cradle. J. Ind. Ecol. 2012, 17, 43–52. [Google Scholar] [CrossRef]
- Frischknecht, R.; Steiner, R.; Jungbluth, N. The Ecological Scarcity Method—Eco-Factors 2006. A Method for Impact Assessment in LCA; Bundesamtfür Umwelt (BAFU): Bern, Switzerland, 2009. [Google Scholar]
- Berger, M.; Finkbeiner, M. Correlation analysis of life cycle impact assessment indicators measuring resource use. Int. J. Life Cycle Assess. 2011, 16, 74–81. [Google Scholar] [CrossRef]
- Vandenbo, C.; Rorbech, J.; Haupt, M.; Frischknecht, R. Abiotic resources: New impact assessment approaches in view of resource efficiency and resource criticality. Int. J. Life Cycle Assess. 2014, 19, 1686–1692. [Google Scholar]
- Ecoinvent. Ecoinvent Data v3.0; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2015. [Google Scholar]
- Cavalett, O.; Chagas, M.; Seabra, J.; Bonomi, A. Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int. J. Life Cycle Assess. 2012, 18, 647–658. [Google Scholar] [CrossRef]
- CPM. Center for Environmental Assessment of Product and Material Systems (CPM) LCA Database; CPM Consortium: Gothenburg, Sweden, 2008. [Google Scholar]
LCIA Method | CEENE | CExD | CED | SED | MIPS | LREx | ICEC/ECEC | EF |
---|---|---|---|---|---|---|---|---|
Base reference | [9] | [22] | [13,16] | [10] | [28] | [21] | [31,32] | [34,35] |
Criterion #1 (Scope) | 5 | 3 | 1 | 4 | 3 | 1 | 4 | 3 |
Criterion #2 (Scientific robustness) | 5 | 3 | 2 | 4 | 2 | 5 | 4 | 2 |
Final score | 5.0 | 3.0 | 1.5 | 4.0 | 2.5 | 3.0 | 4.0 | 2.5 |
Observation | We evaluated v1.0 and v2.0 | - | - | - | - | Specific for land use | - | - |
LCIA Method | ADP | EDIP | Recipe Midpoint | ORI | AADP | OGD |
---|---|---|---|---|---|---|
Base reference | [11,36] | [37] | [39] | [40] | [41] | [43] |
Criterion #1 (Scope) | 5 | 4 | 3 | 1 | 1 | 0.5 |
Criterion #2 (Scientific robustness) | 4 | 3 | 3 | 5 | 5 | 5 |
Final score | 4.5 | 3.5 | 3.0 | 3.0 | 3.0 | 2.75 |
Observation | - | - | - | Specific for metals | Specific for metals at anthroposphere | Since it had only one CF |
LCIA Method | Eco-Indicator 99 | Recipe Endpoint | EPS2000 | SuCo | Exergoecology |
---|---|---|---|---|---|
Base reference | [44] | [39] | [47,48] | [46] | [50,51] |
Criterion #1 (Scope) | 3 | 4 | 5 | 1 | 1 |
Criterion #2 (Scientific robustness) | 2 | 3 | 2 | 4 | 4 |
Final score | 2.5 | 3.5 | 3.5 | 2.5 | 2.5 |
Elementary Flows (Natural Resources) | ADP v3.2 (Ultimate) | ADP v4.2 (Ultimate) | ADP-ILCD (Res. Base) | EDIP2003 | Recipe Midpoint | ORI | AADP | Eco-Indicator 99 | Recipe Endpoint | EPS2000 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BE | FE | BE | FE | BE | FE | BE | FE | BE | FE | BE | FE | BE | FE | BE | FE | BE | FE | BE | FE | |
Metals and minerals | ||||||||||||||||||||
Chromium | - | - | - | - | - | - | - | - | 2% | - | - | - | - | - | - | - | 1% | - | 2% | - |
Copper | - | - | 2% | - | 4% | - | 7% | - | 4% | - | 34% | 28% | - | - | 1% | - | 2% | - | 13% | - |
Iron | - | - | - | - | - | - | - | - | 6% | - | - | - | - | 1% | - | - | 2% | - | 2% | - |
Lead | - | - | 1% | - | 30% | - | 12% | - | - | - | 1% | 1% | - | 1% | - | - | - | - | 7% | - |
Nickel | - | - | - | - | 4% | - | 35% | - | 3% | - | 57% | 61% | 89% | 92% | 1% | - | 1% | - | 14% | - |
Uranium | - | - | - | - | - | 49% | - | 8% | - | 1% | - | - | - | - | - | - | - | - | - | - |
Phosphate rock | - | - | - | - | 1% | - | - | - | - | - | - | - | - | - | - | - | - | - | 3% | - |
Zinc | - | - | 2% | - | 58% | - | 23% | - | - | - | 1% | - | 2% | - | - | - | - | - | 14% | - |
Fossil fuels | ||||||||||||||||||||
Crude oil (diesel-cane) | 20% | - | 21% | - | - | - | 2% | - | 14% | - | - | - | - | - | 23% | - | 22% | - | 5% | - |
Crude oil (FE) | - | 36% | - | 34% | - | 28% | - | 59% | - | 66% | - | - | - | - | - | 66% | - | 66% | - | 51% |
Crude oil (other) | 8% | - | 8% | - | - | - | 1% | - | 11% | - | - | - | - | - | 9% | - | 8% | - | 3% | - |
Natural gas (BE) | 54% | - | 51% | - | - | - | 5% | - | 40% | - | - | - | - | - | 55% | - | 50% | - | 25% | - |
Natural gas (FE) | - | 62% | - | 65% | - | 15% | - | 32% | - | 32% | - | - | - | - | - | 34% | - | 32% | - | 49% |
Natural gas (other) | 8% | - | 7% | - | - | - | 1% | - | 6% | - | - | - | - | - | 8% | - | 7% | - | 4% | - |
Hard coal | 6% | - | 4% | - | - | - | - | - | 4% | - | - | - | - | - | - | - | 4% | - | - | - |
Other elementary flows | 4% | 2% | 6% | 1% | 3% | 8% | 14% | 1% | 10% | 1% | 7% | 10% | 9% | 6% | 4% | 0% | 5% | 2% | 8% | 0% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarenga, R.A.F.; Lins, I.D.O.; Almeida Neto, J.A.d. Evaluation of Abiotic Resource LCIA Methods. Resources 2016, 5, 13. https://doi.org/10.3390/resources5010013
Alvarenga RAF, Lins IDO, Almeida Neto JAd. Evaluation of Abiotic Resource LCIA Methods. Resources. 2016; 5(1):13. https://doi.org/10.3390/resources5010013
Chicago/Turabian StyleAlvarenga, Rodrigo A. F., Ittana De Oliveira Lins, and José Adolfo de Almeida Neto. 2016. "Evaluation of Abiotic Resource LCIA Methods" Resources 5, no. 1: 13. https://doi.org/10.3390/resources5010013
APA StyleAlvarenga, R. A. F., Lins, I. D. O., & Almeida Neto, J. A. d. (2016). Evaluation of Abiotic Resource LCIA Methods. Resources, 5(1), 13. https://doi.org/10.3390/resources5010013