1. Introduction
Environmental scenarios developed by industrial ecologists have influenced contemporary concern around the need for greater materials efficiency and more closed loop production systems that use materials obtained from recycled end of life products. They have informed national and international initiatives to promote recycling and product stewardship in the public interest. While Industrial Ecology (IE) often refers to the economic benefits of materials efficiency, the underlying framing of value is different from the framing of value in economics so that the term “materials efficiency” has different meanings in IE and economics [
1]. This difference is relevant to a significant critique leveled at IE, that it has failed to develop a sophisticated understanding of the spatial dimensions of capturing economic value that drive global material flows [
2,
3,
4,
5]. Evidence of this is provided by the failure of the regionally focused closed loop industrial system models to take off beyond a few exceptional examples.
A further critique is that IE fails to consider the broader societal changes that are required to capture end of life materials for recycling, including social values and norms of practice around disposal of used goods and materials. This aspect also requires a more carefully considered framing of value than that currently drawn on in IE. While various authors do acknowledge that broader social changes are required, there has not yet been any considered engagement with social values and processes of social change that might, for example, affect social practices and norms around the acquisition, use and disposal of goods.
Both these critiques are relevant to initiatives to promote metals recycling in Australia, a country with high levels of per capita consumption of material goods and waste generation. Rather than attempt to address these critiques in full, the paper draws on them to highlight the need for more careful consideration of understandings of value associated with a more efficient or “circular” materials economy, and examine this in relation to metals recycling in Australia. Australia has a small domestic manufacturing industry compared with a significant mining industry largely focused on export markets [
6]. While a modest metals recycling industry exists in Australia, it is likely that total quantities of bulk scrap metal exported overseas each year are much greater than those recycled locally. Flows of used metals, whether in used products or in bulk scrap, are likely to follow a similar pattern to flows of virgin metals from Australia’s mines. This trend is consolidating with the closure of major smelters such as the Alcoa aluminum smelter at Port Henry, near Geelong in Victoria. However, a large potential resource exists in products containing metals that are used in households or commercial buildings, distributed across major population centres. The availability of this resource depends on disposal practices of households and businesses and on the presence of appropriate collection systems.
In 2011, the Australian Government introduced National Product Stewardship legislation which provides a range of options for national collection schemes, ranging from fully voluntary industry led schemes, such as the current Mobile Muster program for mobile phones (run by the Australian Mobile Telecommunications Association), through to fully regulated schemes. A voluntary product stewardship scheme for computers and TVs was introduced in 2012, with support from national and state governments and a majority of companies involved in importing, retailing and recycling computers and TVs. While some sorting and reprocessing takes place in Australia, most of the processes involving extraction of rare earth metals for reuse in other manufacturing take place in factories in Singapore or Hong Kong in compliance with specified certification standards [
7].
Drawing on the example of used metals originating in Australia, the paper examines the material flow models developed in IE to identify and unpack notions of value that are implied but not explained. It then considers the dynamics of value involved in recycling used metals from Australia, drawing on two quite different conceptual framings from economic geography and anthropology that each offers important insights into the processes involved in the revaluing of waste materials. It concludes with a reflection on the potential of the calculative tools of IE to influence the material flows they describe and considers the kind of information needed to refine these tools to better accommodate the multiple valuing practices that operate at different spatial scales.
2. Understanding Value in Industrial Ecology Flow Models
IE provides a systematic way of understanding material flows through society that includes calculations of inputs of environmental resources and outputs of waste (including materials and emissions from energy consumption). The benefit of this type of input-output flow modeling is to make environmental costs, in the form of resource consumption and pollution, both visible and measurable. At the heart of IE is the metaphor of the ecosystem, viewed as a dynamic and evolving complex system involving energy and matter flows [
8,
9]. Value in IE is measured in terms of environmental costs of material inputs and waste outputs.
Figure 1 depicts an inefficient material flow with significant environmental costs associated with its assumptions of unlimited resources available as inputs and no limits on production of waste. The industrial processing and manufacturing stage is represented as a simple ecosystem component.
Figure 1.
Linear material flows, after Jelinski
et al. [
8] (p.793).
Figure 1.
Linear material flows, after Jelinski
et al. [
8] (p.793).
Figure 2 presents a partly cyclical materials flow in which there are recognized limits on material resource inputs but no limits on energy inputs. Because there is some recycling of resources involved, depicted by the interactions among the several ecosystem components, the waste outputs are more limited than in
Figure 1. Both inputs and outputs are still negatively valued in environmental terms, but are less negative than in
Figure 1.
Figure 3 presents a materials efficient system with only energy inputs and no waste outputs as the normative ideal—a materials economy completely comprised of the recycling of existing manufactured goods and materials so that no material inputs are required and no waste output is produced. There are no negative environmental values associated with materials. Current manufacturing systems for durable goods involving metals are probably best depicted as somewhere between
Figure 1 and
Figure 2.
Figure 2.
Quasi-cyclical material flows, after Jelinski
et al. [
8] (p.794).
Figure 2.
Quasi-cyclical material flows, after Jelinski
et al. [
8] (p.794).
Figure 3.
Cyclical materials flows, after Jelinski
et al. [
8] (p.794).
Figure 3.
Cyclical materials flows, after Jelinski
et al. [
8] (p.794).
In other theoretical work around waste, the impossibility of ever achieving the “zero waste” ideal is itself a focus [
10,
11,
12]. This work recognizes that there will always be some form of material remainder, including from recycling and remanufacturing processes [
12] and considers this central to the understanding of material flows in society. Despite these criticisms, modeling from IE does provide a coherent rationale for a new normative model for a materials economy based on the need to avoid environmental degradation and maximize the use value of all materials in the system over time. Importantly, it offers a useful means of quantifying environmental costs in the materials economy that are not currently included in the exchange or market values for either the virgin resources that provide inputs or the waste outputs. In the case of production systems involving metals, Australia currently provides inputs in the form of mineral resources, but manufacturing processes depicted within the circles take place elsewhere. While waste associated with manufacturing occurs elsewhere, waste in the form of end of life products does accumulate in Australia.
Materials efficiency is a central theme in IE, defined as “the provision of material services with less material production and processing” [
13] (p. 362). This definition requires an understanding of the different properties of various materials that influence both the environmental impacts of their production and the options available for reuse and recycling. The case for materials efficiency may be based on the need to ensure future resources for manufacturing as well as the need to reduce environmental impacts associated with continued extraction of virgin materials, but various authors observe that the environmental costs of extraction are emerging as the more significant aspect [
13]. This is particularly the case for metals production where the environmental costs of mining virgin metals are increasing as rich ore deposits are depleted and larger open cut mines are needed to extract the same quantities of minerals from poorer ore deposits [
14]. Despite these trends, however, the price of most bulk metals has actually gone down over time, and both Mudd [
14] and Allwood
et al. [
13] conclude that economic costs of environmental resources, as they currently manifest in prices, are unlikely to precipitate the shift from the linear flows of
Figure 1 to the quasi-cyclical flows of
Figure 2.
This materials focused definition of efficiency is contested by Söderholm and Tilton [
1] who argue that materials efficiency should be defined in economic terms, with environmental costs throughout the commodity chain understood as market failures that distort purchase decisions made by firms, households and individuals. In doing so, they downplay the properties of the materials and their relationship to current recycling technologies and consider environmental impacts should be regarded as one of a number of market failures that prevent the realization of materials efficiency defined in economic terms. Market failures in relation to recycled goods and materials include the failure to internalize environmental costs of virgin material inputs, information asymmetries around recycled products or materials, innovation related failures in which lack of new knowledge around recycling carries an economic cost rather than benefit, and technological externalities that could affect the reuse or recycling of products or materials [
1].
Figure 4 provides a more detailed representation of an efficient materials economy that unpacks the black boxes of ecosystem components shown in
Figure 3 to expose internal processing and reprocessing elements, including the critical role played by consumers in feeding used materials back into the system.
Figure 4.
Model of the Industrial Ecosystem incorporating cyclical materials flows after Jelinski
et al. [
8] (p. 794).
Figure 4.
Model of the Industrial Ecosystem incorporating cyclical materials flows after Jelinski
et al. [
8] (p. 794).
The range of actors involved in the internal processes depicted in
Figure 4 highlights the need to frame a concept of value that connects with a broad range of interests and concerns including economic concerns influencing relationships among businesses, and the diverse social or cultural values that influence consumers. In their review of barriers and incentives for materials efficiency, Allwood
et al. [
13] acknowledge that a wider range of values are involved, particularly in their discussion of incentives outlined in terms of business opportunities, government interventions and consumer drivers. The economic paradigm presented by Söderholm and Tilton [
1] is only able to account for social values to the extent that they comply with the ideal of rational self-interested decisions by individuals, households and firms. The failure to do so is treated as a “behavioural failure” that might also need to be addressed through policy measures [
1].
Neither the engineering nor the economic approach to materials efficiency engages with the significant body of social science research on how social values are invested in goods and materials and on processes of change in socio-technical systems. Literature on consumption studies and material culture shows that consumers operate with very diverse motivations as values ascribed to products and materials are bound up with relationships to other people both formally, through economic systems, and informally through relations of sharing, gifting,
etc. [
15,
16,
17]. Paid and unpaid human labor may be involved in their production, purchase, ongoing repair or maintenance and in waste management or recycling [
15,
17,
18,
19,
20]. With increasing industrialization and urbanization, the scale of resource consumption, waste generation and potential recycling has undergone profound change over time from a locally contained system to a global scale open system, although the character and time frame of this trajectory has varied between countries.
Contemporary environmental concerns around waste and resource consumption can be understood as a new framing of old themes in a globalised materials economy. As with the patriotic imperatives for thrift and recycling during war time [
21,
22], there is a strong moral injunction to contemporary recycling framed in terms of environmental public good benefits, whether at the scale of national waste policy, e.g., Australia’s national waste policy
Less Waste More Resources [
23], or at the scale of individual or household practices [
24]. The act of putting out the garbage is now governed by new sets of social norms that combine with regulatory structures and infrastructure to promote what might be described as a new regime of waste management that aims to capture waste as a resource and reduce disposal in landfill [
24]. This new/old ethic has been internalised by many householders who go beyond the waste management systems provided by governments to implement their own stewardship practices for reusing and recycling goods and materials within homes and neighbourhoods [
20,
24].
The issue of the appropriate geographical scale for materials efficiency or a circular materials economy is far from resolved and carries similar tensions between efficiency measured in terms of materials conservation
versus economic efficiency. The internal processes involved in the type of industrial ecosystem depicted in
Figure 4 may include processes that operate at quite different geographical scales, ranging from the scale of consumers within households to the globalised production systems involved in many manufacturing industries. To date, the main approach advanced for implementing such closed loop industrial system models is through the establishment of eco-industrial parks, a form of industrial symbiosis where industrial activities are co-located in order to maximise the potential for use of waste outputs from one industry as inputs into a different industry. While there has been some experimentation with this type of regional industrial development, with several examples from various developed countries repeatedly referred to in the literature [
4], it has not proved influential globally [
2,
3,
4]. In some cases, geographical proximity may facilitate the two-way material flows depicted but proximity alone is clearly not enough.
Various scholars have questioned the implicit assumptions that firms or industrial processes manifest at particular spatial scales or that particular scales should be privileged in contemporary commodity trading [
3,
4,
25,
26]. Just in terms of the environmental resources consumed, including energy used in transport as well as manufacturing processes, the calculations are quite complex with key variables subject to change over time. Based on a study of global flows of scrap metal originating from the USA, Lyons
et al. [
4] concluded that, while ideally all scrap would be sorted and aggregated close to the site of generation to minimise transportation and place responsibility for waste materials in the region or country where they were consumed, there was a practical case for continuing to close scrap loops at the international level in the short to medium term because the overall environmental benefits of recycling “are likely to outweigh the environmental costs of transportation and virgin production” [
4] (p. 297). They note that an oversupply of scrap in the developed world combined with a lack of supply in the developing world is a significant driver of global flows and ensures a level of recycling that is not currently economically feasible within the US. However, they emphasise the need for more detailed analysis of social impacts of these processes and assessment of the costs, benefits and opportunities that result in particular outcomes in real places.
International concern about the environmental and public health impacts of electronic and other hazardous waste is another driver for geographical containment of recycling processes in the country of origin. These include the Basel Convention on trans-boundary movement of hazardous wastes and various European Commission Directives around end-of-life take back and reprocessing for products ranging from motor vehicles to electrical and electronic waste. While these have so far had only limited success at containing where recycling occurs, they have increased the costs associated with landfilling and made waste management costs in general more visible [
27].
4. Conclusions
If value in goods and materials is understood in terms of valuing practices and processes within socio-technical systems, how might IE exert influence on these practices and processes in line with the promotion of a circular materials economy? A key focus of IE has been the development of calculative tools for assessing environmental impacts of products and materials through Life Cycle Assessments and scenario modeling. These are used to compare environmental impacts of continued reliance on virgin metals
versus recycled material and have the potential to influence economic modelling for resource futures. Çalışkan and Callon [
43] have argued that the calculative tools of economists used to predict prices of products and commodities in markets and model their performance in future scenarios can be regarded as sociotechnical arrangements or mechanisms that exercise agency themselves so that the worlds that correspond to these models end up existing and producing recurrent events. In other words, they perform by prescription. Perhaps, the material flows models of IE can similarly be regarded as a sociotechnical arrangement in Çalışkan and Callon’s [
43] terms in that they produce statements about the material world and the phenomenological qualities of materials that can be understood to be co-evolving as knowledge of materials and technologies develops and conditions in the material world change. However, to have any traction among the key actors and agencies influential in current material flows, they must influence other kinds of valuing practices, particularly the public good assessments that influence government policy and the economic assessments that influence commercial strategies. This suggests a useful direction for future research.
The relative economic costs and benefits of reliance on virgin
versus recycled metals are strongly influenced by national and international regulatory regimes that govern international trade, corporate taxation regimes and environmental and labor standards standards [
44]. Changes in these regulatory regimes can also affect the spatial dynamics of value capture in different types of industry. Without change, economic value capture in metals recycling will continue to take place primarily offshore, may not occur at all or for some products and materials, or will emerge too slowly to position Australian industry strategically. Environmental economists justify interventions of this kind by putting a dollar value on environmental degradation and release of pollutants into the environment. For example, as many countries now assign a dollar value to carbon emissions, the economics of carbon intensive industries is beginning to change. Interventions at the national scale might be justified in terms of the social benefits of promoting local industries around urban mining that divert current material flows to landfill towards new forms of manufacturing that provide local employment opportunities. These could involve further regulatory change or new forms of product stewardship or certification schemes that go beyond conventional end of life take-back schemes to include the whole commodity chain, including the production stage.
Transformation of existing waste disposal practices, from the household scale through to the scale of business practice and whole industry sectors, requires broad based changes to social norms and assumptions about responsibility. This has a recursive aspect as public support for materials recycling can increase government willingness to invest in the more advanced waste collection and sorting facilities needed to support the development of advanced metals recycling capacity (the Australian Government’s decision to support a national product stewardship scheme for recycling computers and TVs was informed by an assessment of public support for this initiative [
7]). The charity sector has a long history of involvement in recycling of used goods and already taps existing social values about the benefits of extending product lifespans by donating unwanted goods to the needy [
45,
46]. Voluntary product stewardship programs, such as Australia’s Mobile Muster take back scheme for mobile phones, rely on understandings of responsibility at the household scale and among the producers and retailers who sign on to the scheme (It should be noted that some manufacturers (e.g., Apple Inc., Cupertino, CA, USA) prefer to maintain their own corporate social responsibility take back schemes that are implemented globally rather than sign up to nationally focused schemes).
At present, key elements required for creating and consolidating alternative pathways for metals recycling in Australia are missing. The most obvious is the current lack of manufacturing expertise and infrastructure for reprocessing used products and materials. However, greater knowledge of the resource is also needed. The current and potential supply of recyclable products and materials is characterized by its spatial distribution across domestic residences and commercial buildings in Australian cities [
47]. More detailed knowledge is required, not only about the size and characteristics of the potential resource, but also about the actors and organizations that accumulate these materials and their current practices around disposal. Information is needed about existing collection systems, their logistical elements, how economic value is currently captured in collection of used goods and materials, and the formal and informal institutional frameworks that influence current arrangements. Also required is a better understanding of the informal frameworks of social values, norms and knowledge that influence current disposal practices. These are likely to differ significantly for different products and material types, depending on the types of actors and organizations involved. The inherently interdisciplinary research outlined here will be greatly facilitated by regarding value as a dynamic concept that manifests differently in process and practices at different spatial scales.