The Importance, Strategies, and Future Prospects of Mine Ecological Restoration
1. Introduction
2. The Need for Mine Ecological Restoration
2.1. Environmental Impacts of Mining
2.2. Biodiversity Loss
2.3. Climate Change Considerations
3. Principles of Ecological Restoration
3.1. Definition and Objectives
3.2. Community Engagement
3.3. Scientific Research and Monitoring
4. Successful Restoration Strategies
4.1. Reforestation and Afforestation
4.2. Soil Restoration Techniques
4.3. Wetland Restoration
4.4. Native Species Reintroduction
5. Challenges in Mine Ecological Restoration
5.1. Financial Constraints
5.2. Regulatory Frameworks
5.3. Climate Change Adaptation
5.4. Knowledge Gaps
6. Future Prospects
6.1. Integrated Approaches
6.2. Technological Innovations
6.3. Education and Capacity Building
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiang, Y.; Gong, J.; Zhang, L.; Zhang, M.; Chen, J.; Liang, H.; Chen, Y.; Fu, X.; Su, R.; Luo, Y. Research Progress of Mine Ecological Restoration Technology. Resources 2025, 14, 100. [Google Scholar] [CrossRef]
- Li, M.S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 2006, 357, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Stephanie, W.A.; Li, J. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2020, 279, 111623. [Google Scholar]
- Osterhout, M.J.; Stewart, K.M.; Wakeling, B.F.; Schroeder, C.A.; Blum, M.E.; Brockman, J.C.; Shoemaker, K.T. Effects of large-scale gold mining on habitat use and selection by American pronghorn. Sci. Total Environ. 2024, 921, 170750. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Wang, Y.; Huang, S.; Chen, R.; Wang, J. Application for ecological restoration of contaminated soil: Phytoremediation. Int. J. Environ. Res. Public. Health 2022, 19, 13124. [Google Scholar] [CrossRef]
- Xu, L.; Tang, L.; Zhang, X.; Hou, Z.; Haris, M.; Luo, J.; Yang, Y. Mine waste water self-purification (arsenic) in neutral hydrogeochemical ecosystem: A case study from V-Ti-Fe mine tailings. Geochemistry 2023, 83, 125947. [Google Scholar] [CrossRef]
- Puche, A.G.; Driver, E.M.; Propper, C.R. Review: Abandoned mines as a resource or liability for wildlife. Sci. Total Environ. 2024, 921, 171017. [Google Scholar] [CrossRef]
- Su, R.; Ou, Q.; Wang, H.; Dai, X.; Chen, Y.; Luo, Y.; Yao, H.; Ouyang, D.; Li, Z.; Wang, Z. Organic–inorganic composite modifiers enhance restoration potential of Nerium oleander L. to lead–zinc tailing: Application of phytoremediation. Environ. Sci. Pollut. Res. Int. 2023, 30, 56569–56579. [Google Scholar] [CrossRef]
- He, M.; Wang, Q. Rock dynamics in deep mining. Int. J. Min. Sci. Technol. 2023, 33, 1065–1082. [Google Scholar] [CrossRef]
- Michał, H.; Bogumił, N.; Paweł, S. Evaluating indicators of hydrologic alteration to demonstrate the impact of open-pit lignite mining on the flow regimes of small and medium-sized rivers. Ecol. Indic. 2023, 157, 111295. [Google Scholar]
- Gao, R.; Ai, N.; Liu, G.; Liu, C.; Qiang, F.; Zhang, Z.; Xiang, T.; Zang, K. The Coupling Relationship between Herb Communities and Soil in a Coal Mine Reclamation Area after Different Years of Restoration. Forests 2022, 13, 1481. [Google Scholar] [CrossRef]
- Zhu, X.; Ning, Z.; Cheng, H.; Zhang, P. A novel calculation method of subsidence waterlogging spatial information based on remote sensing techniques and surface subsidence prediction. J. Clean. Prod. 2022, 335, 130366. [Google Scholar] [CrossRef]
- Hou, Y.; Zhao, Y.; Lu, J.; Wei, Q.; Zang, L.; Zhao, X. Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines—A global meta-analysis. Environ. Pollut. 2023, 330, 121803. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Yang, K.; Zhu, M.; Wen, J. The impact of microbial community structure changes on the migration and release of typical heavy metal (loid)s during the revegetation process of mercury-thallium mining waste slag. Environ. Res. 2024, 251, 118716. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, I.; Mora-Silva, D.; Arguello Guadalupe, C.; Carrillo Arteaga, T.; Ureta Valdez, R.; Orna Puente, L.M.; Tobar Ruiz, M.G.; Ati-Cutiupala, G.; Sanchez-Salazar, M.; Straface, S.; et al. Risks to Human Health from the Consumption of Water from Aquifers in Gold Mining Areas in the Coastal Region of Ecuador. Resources 2024, 13, 53. [Google Scholar] [CrossRef]
- Passarelli, I.; Mora-Silva, D.; Jimenez-Gutierrez, M.; Logroño-Naranjo, S.; Hernández-Allauca, D.; Valdez, R.U.; Avalos Peñafiel, V.G.; Tierra Pérez, L.P.; Sanchez-Salazar, M.; Tobar Ruiz, M.G.; et al. Hg pollution in groundwater of andean region of ecuador and human health risk assessment. Resources 2024, 13, 84. [Google Scholar] [CrossRef]
- Alghamdi, S.A.; El-Zohri, M. Phytoremediation characterization of heavy metals by some native plants at anthropogenic polluted sites in Jeddah, Saudi Arabia. Resources 2024, 13, 98. [Google Scholar] [CrossRef]
- Gomes, P.C.S.; Rochinha, I.d.S.P.; Paiva, M.H.R.d.; Santiago, A.d.F. Performance of different macrophytes and support media in constructed wetlands for high turbidity reduction from mine spoil rainwater. Resources 2024, 13, 168. [Google Scholar] [CrossRef]
- Aska, B.; Franks, D.M.; Stringer, M.; Sonter, L.J. Biodiversity conservation threatened by global mining wastes. Nat. Sustain. 2024, 7, 23–30. [Google Scholar] [CrossRef]
- Clarke, V.C.; Silva, J.M.; Claassens, S.; Siebert, S.J. Crinum bulbispermum, a Medicinal Geophyte with Phytostabilization Properties in Metal-Enriched Mine Tailings. Plants 2023, 13, 79. [Google Scholar] [CrossRef]
- Su, R.; Xie, T.; Yao, H.; Chen, Y.; Wang, H.; Dai, X.; Wang, Y.; Shi, L.; Luo, Y. Lead responses and tolerance mechanisms of Koelreuteria paniculata: A newly potential plant for sustainable phytoremediation of Pb-contaminated soil. Int. J. Environ. Res. Public Health 2022, 19, 14968. [Google Scholar] [CrossRef]
- Kattel, G.R. Climate warming in the Himalayas threatens biodiversity, ecosystem functioning and ecosystem services in the 21st century: Is there a better solution? Biodivers. Conserv. 2022, 31, 2017–2044. [Google Scholar] [CrossRef]
- Rim, K.; David, R.; Laurence, G.; Nicolas, B. Stability of carbon pools and fluxes of a Technosol along a 7-year reclamation chronosequence at an asbestos mine in Canada. Ecol. Eng. 2023, 186, 106839. [Google Scholar]
- Yang, G.; Su, C.; Zhang, H.; Zhang, X.; Liu, Y. Tree-level landscape transitions and changes in carbon storage throughout the mine life cycle. Sci. Total Environ. 2023, 905, 166896. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Liu, H.; Wang, F.; Dong, Y.; Wu, G.; Li, Y.; Wang, W.; Tran, L.S.P.; Li, W. Multi-objective ecological restoration priority in China: Cost-benefit optimization in different ecological performance regimes based on planetary boundaries. J. Environ. Manag. 2024, 356, 120701. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.; Lin, C. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Su, R.; Ou, Q.; Wang, H.; Luo, Y.; Dai, X.; Wang, Y.; Chen, Y.; Shi, L. Comparison of phytoremediation potential of Nerium indicum with inorganic modifier calcium carbonate and organic modifier mushroom residue to lead-zinc tailings. Int. J. Environ. Res. Public Health 2022, 19, 10353. [Google Scholar] [CrossRef]
- Xie, T.; Chen, Y.; Su, R.; Liu, H.; Yao, H. Mechanism of lead-zinc enrichment and resistance of spent mushroom compost to Lead-Zinc slag in Koelreuteria paniculata. Environ. Sci. 2022, 43, 4687–4696. [Google Scholar]
- He, L.; Su, R.; Chen, Y.; Zeng, P.; Du, L.; Cai, B.; Zhang, A.; Zhu, H. Integration of manganese accumulation, subcellular distribution, chemical forms, and physiological responses to understand manganese tolerance in Macleaya cordata. Environ. Sci. Pollut. R. 2022, 29, 39017–39026. [Google Scholar] [CrossRef]
- Han, L.; Chen, Y.; Chen, M.; Wu, Y.; Su, R.; Du, L.; Liu, Z. Mushroom residue modification enhances phytoremediation potential of Paulownia fortunei to lead-zinc slag. Chemosphere 2020, 253, 126774. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, J.; Jing, Z. Tempo-spatial changes of ecological vulnerability in resource-based urban based on genetic projection pursuit model. Ecol. Indic. 2021, 121, 107059. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, W.; Bai, Z.; Cao, Y.; Wang, J. Delimitation of supervision zones based on the soil property characteristics in a reclaimed opencast coal mine dump on the Loess Plateau, China. Sci. Total Environ. 2021, 772, 145006. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, K. Evaluation of mine ecological environment based on fuzzy hierarchical analysis and grey relational degree. Environ. Res. 2024, 257, 119370. [Google Scholar] [CrossRef] [PubMed]
- Baez, S.E.L.; Boeni, A.F.; Valderrama, P.D.; Rodrigues, R.R. Attention needed in forest carbon projects: An analysis of initiatives in Colombia. For. Ecol. Manag. 2024, 574, 122354. [Google Scholar] [CrossRef]
- Li, T.; Wu, M.; Duan, C.; Li, S.; Liu, C. The effect of different restoration approaches on vegetation development in metal mines. Sci. Total Environ. 2022, 806, 150626. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wu, F.; Wu, Q.; Fornara, D.A.; Petr, H.; Peng, Y.; Zhu, G.; Zhao, Z.; Yue, K. Vegetation restoration effects on soil carbon and nutrient concentrations and enzymatic activities in post-mining lands are mediated by mine type, climate, and former soil properties. Sci. Total Environ. 2023, 879, 163059. [Google Scholar] [CrossRef]
- Du, T.; Wang, D.; Bai, Y.; Zhang, Z. Optimizing the formulation of coal gangue planting substrate using wastes: The sustainability of coal mine ecological restoration. Ecol. Eng. 2020, 143, 105669. [Google Scholar] [CrossRef]
- Wong, M.H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003, 50, 775–780. [Google Scholar] [CrossRef]
- Chen, B.D.; Zhu, Y.-G.; Duan, J.; Xiao, X.Y.; Smith, S.E. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ. Pollut. 2006, 147, 374–380. [Google Scholar] [CrossRef]
- Xiao, D.; Peng, S.; He, H.; Xu, X.; Keita, M.; Gigena, M.L.; Zhang, Y. Mechanisms of microbial diversity modulation of mineral black clay to achieve ecological restoration of open-pit mine dump. J. Environ. Manag. 2024, 370, 122708. [Google Scholar] [CrossRef]
- Su, R.; Xue, R.; Ma, X.; Zeng, Z.; Li, L.; Wang, S. Targeted improvement of narrow micropores in porous carbon for enhancing trace benzene vapor removal: Revealing the adsorption mechanism via experimental and molecular simulation. J. Colloid Interf. Sci. 2024, 671, 770–778. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, J.; Yang, Z.; Liu, Z.; Chen, Y.; Huang, S.; Su, R.; Ma, X.; Yan, W. The impact of neglected potassium in KOH-activated porous carbon on CO2 capture and CO2/N2 selectivity: Experimental and molecular simulation studies. Appl. Surf. Sci. 2024, 681, 161571. [Google Scholar] [CrossRef]
- Luo, Y.; Fang, M.; Wang, H.; Dai, X.; Su, R.; Ma, X. Revealing the adsorption mechanisms of methanol on lithium-doped porous carbon through experimental and theoretical calculations. Nanomaterials 2023, 13, 2564. [Google Scholar] [CrossRef]
- Gao, J.; Deng, G.; Jiang, H.; Ma, Q.; Wen, Y.; He, C.; Guo, Y.; Cao, Y. Water quality management of micro swamp wetland based on the “source-transfer-sink” theory: A case study of Momoge Swamp Wetland in Songnen Plain, China. J. Clean. Prod. 2024, 446, 141450. [Google Scholar] [CrossRef]
- Sebastián-González, E.; Green, A.J. Reduction of avian diversity in created versus natural and restored wetlands. Ecography 2016, 39, 1176–1184. [Google Scholar] [CrossRef]
- Carvalho, A.C.; Pereira, I.M.; Lima, A.O.d.; Zanuncio, J.C.; Rech, A.R.; Siqueira, W.K.; Fernandes, G.W. Reintroduction of native species in an ecological restoration program from a quartzite area of campos rupestres. Plant Soil 2024, 1–16. [Google Scholar] [CrossRef]
- Xu, X.; Gu, X.; Wang, Q.; Gao, X.; Liu, J.; Wang, Z.; Wang, X. Production scheduling optimization considering ecological costs for open pit metal mines. J. Clean. Prod. 2018, 180, 210–221. [Google Scholar] [CrossRef]
- Dong, Z.; Bian, Z.; Jin, W.; Guo, X.; Zhang, Y.; Liu, X.; Wang, C.; Guan, D. An integrated approach to prioritizing ecological restoration of abandoned mine lands based on cost-benefit analysis. Sci. Total Environ. 2024, 924, 171579. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Shang, J.; Niu, W. Research on the impacting mechanism and enhancement strategies for the effect of safety regulation in Chinese coal mine. Resour. Policy 2024, 91, 104918. [Google Scholar]
- Bulovic, N.; McIntyre, N.; Trancoso, R. Climate change risks to mine closure. J. Clean. Prod. 2024, 465, 142697. [Google Scholar] [CrossRef]
- Capichoni, M.J.; Flexa, d.C.A.; Sanjuan, d.M.S.P.; Mota, d.S.G.; Frois, C.C.; Silvio, R.; Markus, G. Species selection for optimizing mine land rehabilitation: Integrating functional traits with the minimum set prioritization technique. Ecol. Eng. 2023, 194, 107039. [Google Scholar]
- Zhao, W.; Wu, S.; Chen, X.; Shen, J.; Wei, F.; Li, D.; Liu, L.; Li, S. How would ecological restoration affect multiple ecosystem service supplies and tradeoffs? A study of mine tailings restoration in China. Ecol. Indic. 2023, 153, 110451. [Google Scholar] [CrossRef]
- An, S.; Yuan, L.; Xu, Y.; Wang, X.; Zhou, D. Ground subsidence monitoring in based on UAV-LiDAR technology: A case study of a mine in the Ordos, China. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 57. [Google Scholar] [CrossRef]
- Sihan, P.; Nisha, B.; Shijia, W.; Asa, G.; Mohammadmehdi, S.; Yi, P. Mapping vertical distribution of SOC and TN in reclaimed mine soils using point and imaging spectroscopy. Ecol. Indic. 2024, 158, 111437. [Google Scholar]
- Spanidis, P.M.; Pavloudakis, F.; Roumpos, C. Knowledge gaps in mining operations: Empirical evidence from the greek lignite mining industry. Mater. Proc. 2023, 15, 15. [Google Scholar]
- Kragt, M.E.; Ana, M. Identifying industry practice, barriers, and opportunities for mine rehabilitation completion criteria in western Australia. J. Environ. Manag. 2021, 287, 112258. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.K.; Díez, Á.S.; Lotz, R.I. The effects of critical mineral endowments on green economic growth in Latin America. Resour. Policy 2024, 98, 105355. [Google Scholar] [CrossRef]
- Meng, D.; Bao, N.; Tayier, K.; Li, Q.; Yang, T. A remote sensing based index for assessing long-term ecological impact in arid mined land. Environ. Sustain. Indic. 2024, 22, 100364. [Google Scholar] [CrossRef]
- Gong, B.; Shu, C.; Han, S.; Cheng, S.-G. Mine Vegetation Identification via Ecological Monitoring and Deep Belief Network. Plants 2021, 10, 1099. [Google Scholar] [CrossRef]
- Song, L.; Qiao, J.; Zhang, F.; Kong, X.; Li, H.; Luan, S.; Zhang, Q.; Kang, Z.; Han, Z.; Zhang, Z. An ecological remediation model combining optimal substrate amelioration and native hyperaccumulator colonization in non-ferrous metal tailings pond. J. Environ. Manag. 2022, 322, 116141. [Google Scholar] [CrossRef]
- Bashir, Z.; Raj, D.; Selvasembian, R. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps. Chemosphere 2024, 363, 142774. [Google Scholar] [CrossRef] [PubMed]
- Stella, d.l.T.; Citlalli, M. Primate Conservation Efforts and Sustainable Development Goals in Ecuador, Combining Research, Education and Capacity Building. Animals 2022, 12, 2750. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luo, K.; Zhao, Y.; Lechner, A.M.; Wu, J.; Zhu, Q.; Sha, W.; Wang, Y. Modelling regional ecological security pattern and restoration priorities after long-term intensive open-pit coal mining. Sci. Total Environ. 2022, 835, 155491. [Google Scholar] [CrossRef] [PubMed]
- Santin, L.H.; Gagen, E.J.; Erskine, P.D. Setting restorative goals with a regional outlook: Mine-rehabilitation outcomes influence landscape connectivity. J. Environ. Manag. 2024, 357, 120778. [Google Scholar] [CrossRef]
- Gastauer, M.; Pinheiro, T.; Caldeira, C.F.; Ramos, S.J.; Coelho, R.R.; Fonseca, D.S.; Tyski, L.; Cardoso, A.L.d.R.; Neto, C.d.S.C.; Guimarães, L.; et al. Large-scale forest restoration generates comprehensive biodiversity gains in an Amazonian mining site. J. Clean. Prod. 2024, 443, 140959. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, R. The Importance, Strategies, and Future Prospects of Mine Ecological Restoration. Resources 2025, 14, 105. https://doi.org/10.3390/resources14070105
Su R. The Importance, Strategies, and Future Prospects of Mine Ecological Restoration. Resources. 2025; 14(7):105. https://doi.org/10.3390/resources14070105
Chicago/Turabian StyleSu, Rongkui. 2025. "The Importance, Strategies, and Future Prospects of Mine Ecological Restoration" Resources 14, no. 7: 105. https://doi.org/10.3390/resources14070105
APA StyleSu, R. (2025). The Importance, Strategies, and Future Prospects of Mine Ecological Restoration. Resources, 14(7), 105. https://doi.org/10.3390/resources14070105