Alternatives and Benchmarking for Implementations of Waste-to-Energy from Municipal Solid Waste: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
- IRQ1: What are the main WtE technologies for MSW management?
- IRQ2: How can different WtE technologies contribute to MSW management?
- IRQ3: What are the challenges, opportunities, and benchmarks for adopting WtE technologies in MSW management?
3. Systematic Review Findings: An Overview of WtE Technologies and Applications
3.1. Municipal Solid Waste Pathways
3.2. Thermochemical Technologies: Incineration, Gasification, Pyrolysis
3.3. Biochemical and Chemical Processes Technologies
3.4. Technological Choices: Synthesis
4. Driving MSW Management in New Implementations: Policies, Benchmarks, and Advances
4.1. Suggestions and Benchmarks
4.2. Advances and Opportunities for Implementations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Environment Programme. Global Waste Management Outlook 2024—Beyond an age of waste: Turning rubbish into a resource. In Global Waste Management Outlook 2024—Beyond an Age of Waste: Turning Rubbish into a Resource; United Nations Environment Programme: Nairobi, Kenya, 2024. [Google Scholar] [CrossRef]
- Malav, L.; Yadav, K.; Gupta, N.; Kumar, S.; Sharma, G.; Krishnan, S.; Rezania, S.; Kamyab, H.; Pham, Q.; Yadav, S.; et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J. Clean. Prod. 2020, 277, 123227. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K. The evolution of waste-to-energy incineration: A review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Colangelo, G.; Facchini, F.; Ranieri, L.; Starace, G.; Vitti, M. Assessment of carbon emissions’ effects on the investments in conventional and innovative waste-to-energy treatments. J. Clean. Prod. 2023, 388, 135849. [Google Scholar] [CrossRef]
- Scarlat, N.; Motola, V.; Dallemand, J.; Monforti-Ferrario, F.; Mofor, L. Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renew. Sustain. Energy Rev. 2015, 50, 1269–1286. [Google Scholar] [CrossRef]
- Tisi, Y.; Matos, F.; Carneiro, M. Development of waste-to-energy through integrated sustainable waste management: The case of ABREN WtERT Brazil towards changing status quo in Brazil. Waste Dispos. Sustain. Energy 2023, 5, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.; Shetty, N.; Thimmappa, B. A review of the current situation of municipal solid waste management in India and its potential for anaerobic digestion. Int. J. Environ. Pollut. 2021, 69, 130–150. [Google Scholar] [CrossRef]
- Dadario, N.; Gabriel Filho, L.; Cremasco, C.; Santos, F.; Rizk, M.; Mollo Neto, M. Waste-to-Energy Recovery from Municipal Solid Waste: Global Scenario and Prospects of Mass Burning Technology in Brazil. Sustainability 2023, 15, 5397. [Google Scholar] [CrossRef]
- Habib, M.; Ahmed, M.; Aziz, M.; Beg, M.; Hoque, M. Municipal solid waste management and waste-to-energy potential from Rajshahi City Corporation in Bangladesh. Appl. Sci. 2021, 11, 3744. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Y.; Chen, X.; Jia, D.; Evrendilek, F.; Liu, J. Pyrolytic Valorization of Polygonum multiflorum Residues: Kinetic, Thermodynamic, and Product Distribution Analyses. Processes 2025, 13, 2701. [Google Scholar] [CrossRef]
- Khan, I.; Kabir, Z. Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment. Renew. Energy 2020, 150, 320–333. [Google Scholar] [CrossRef]
- Lee, D. Gasification of municipal solid waste (MSW) as a cleaner final disposal route: A mini-review. Bioresour. Technol. 2022, 344, 126217. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, J.; Liu, J.W.; Zhou, J.; Cheng, L.; Zhao, J.; Shao, Z.; Iris, Ç.; Pan, B.; Li, X.; et al. A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. J. Clean. Prod. 2021, 293, 126144. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, C.; Zhang, C.; Xia, B.; Chen, Q.; Skitmore, M. Effects of economic compensation on public acceptance of waste-to-energy incineration projects: An attribution theory perspective. J. Environ. Plan. Manag. 2021, 64, 1515–1535. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, C.; Xia, B.; Liu, S.; Skitmore, M. Identification of Risk Factors Affecting PPP Waste-to-Energy Incineration Projects in China: A Multiple Case Study. Adv. Civ. Eng. 2018, 2018, 4983523. [Google Scholar] [CrossRef]
- Liu, Z.; Adams, M.; Cote, R.; Geng, Y.; Li, Y. Comparative study on the pathways of industrial parks towards sustainable development between China and Canada. Resour. Conserv. Recycl. 2018, 128, 417–425. [Google Scholar] [CrossRef]
- Dixit, A.; Singh, D.; Shukla, S.K. Changing scenario of municipal solid waste management in Kanpur city, India. J. Mater. Cycles Waste Manag. 2022, 24, 1648–1662. [Google Scholar] [CrossRef]
- Mukherjee, C.; Denney, J.; Mbonimpa, E.; Slagley, J.; Bhowmik, R. A review on municipal solid waste-to-energy trends in the USA. Renew. Sustain. Energy Rev. 2020, 119, 109512. [Google Scholar] [CrossRef]
- Khan, I.; Chowdhury, S.; Techato, K. Waste to Energy in Developing Countries—A Rapid Review: Opportunities, Challenges, and Policies in Selected Countries of Sub-Saharan Africa and South Asia towards Sustainability. Sustainability 2022, 14, 3740. [Google Scholar] [CrossRef]
- Mabalane, P.; Oboirien, B.; Sadiku, E.; Masukume, M. A Techno-economic Analysis of Anaerobic Digestion and Gasification Hybrid System: Energy Recovery from Municipal Solid Waste in South Africa. Waste Biomass Valorization 2021, 12, 1167–1184. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Fandiño, J.; Eras, J. Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia). Int. J. Sustain. Eng. 2021, 14, 1809–1825. [Google Scholar] [CrossRef]
- Firtina-Ertis, I.; Ayvaz-Cavdaroglu, N.; Coban, A. An optimization-based analysis of waste-to-energy options for different income level countries. Int. J. Energy Res. 2021, 45, 10794–10807. [Google Scholar] [CrossRef]
- Khatiwada, D.; Golzar, F.; Mainali, B.; Devendran, A. Circularity in the Management of Municipal Solid Waste—A Systematic Review. Environ. Clim. Technol. 2021, 25, 491–507. [Google Scholar] [CrossRef]
- Vrabie, C. Converting municipal waste to energy through the biomass chain, a key technology for environmental issues in (Smart) cities. Sustainability 2021, 13, 4633. [Google Scholar] [CrossRef]
- Yang, Y.; Liew, R.; Tamothran, A.; Foong, S.; Yek, P.; Chia, P.; Van Tran, T.; Peng, W.; Lam, S. Gasification of refuse-derived fuel from municipal solid waste for energy production: A review. Environ. Chem. Lett. 2021, 19, 2127–2140. [Google Scholar] [CrossRef]
- Kurbatova, A.; Abu-Qdais, H. Using multi-criteria decision analysis to select waste to energy technology for a Megacity: The case of Moscow. Sustainability 2020, 12, 9828. [Google Scholar] [CrossRef]
- Čepić, Z.; Bošković, G.; Ubavin, D.; Batinić, B. Waste-to-Energy in Transition Countries: Case Study of Belgrade (Serbia). Pol. J. Environ. Stud. 2022, 31, 4579–4588. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef]
- Santos, S.; Nobre, C.; Brito, P.; Gonçalves, M. Brief Overview of Refuse-Derived Fuel Production and Energetic Valorization: Applied Technology and Main Challenges. Sustainability 2023, 15, 10342. [Google Scholar] [CrossRef]
- Ddiba, D.; Andersson, K.; Rosemarin, A.; Schulte-Herbrüggen, H.; Dickin, S. The circular economy potential of urban organic waste streams in low-and middle-income countries. Environ. Dev. Sustain. 2022, 24, 1116–1144. [Google Scholar] [CrossRef]
- Marinelli, S.; Butturi, M.A.; Rimini, B.; Gamberini, R.; Sellitto, M.A. Estimating the circularity performance of an emerging industrial symbiosis network: The case of recycled plastic fibers in reinforced concrete. Sustainability 2021, 13, 10257. [Google Scholar] [CrossRef]
- Sellitto, M.A.; Almeida, F. Strategies for value recovery from industrial waste: Case studies of six industries from Brazil. Benchmarking Int. J. 2020, 27, 867–885. [Google Scholar] [CrossRef]
- Ramos, A.; Rouboa, A. Life cycle thinking of plasma gasification as a waste-to-energy tool: Review on environmental, economic and social aspects. Renew. Sustain. Energy Rev. 2022, 153, 111762. [Google Scholar] [CrossRef]
- Esfilar, R.; Bagheri, M.; Golestani, B. Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria. Renew. Sustain. Energy Rev. 2021, 146, 111190. [Google Scholar] [CrossRef]
- Lee, R.; Meyer, B.; Huang, Q.; Voss, R. Sustainable waste management for zero waste cities in China: Potential, challenges and opportunities. Clean Energy 2020, 4, 169–201. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.; Chen, Y.; Su, P. Artificial intelligence technique development for energy-efficient waste-to-energy: A case study of an incineration plant. Case Stud. Therm. Eng. 2024, 61, 105071. [Google Scholar] [CrossRef]
- Hsu, H.; Binyet, E.; Nugroho, R.; Wang, W.; Srinophakun, P.; Chein, R.; Demafelis, R.; Chiarasumran, N.; Saputro, H.; Alhikami, A.; et al. Toward sustainability of Waste-to-Energy: An overview. Energy Convers. Manag. 2024, 321, 119063. [Google Scholar] [CrossRef]
- Cole-Hunter, T.; Johnston, F.; Marks, G.; Morawska, L.; Morgan, G.; Overs, M.; Porta-Cubas, A.; Cowie, C. The health impacts of waste-to-energy emissions: A systematic review of the literature. Environ. Res. Lett. 2020, 15, 123006. [Google Scholar] [CrossRef]
- Senpong, C.; Wiwattanadate, D. Sustainable Energy Transition in Thailand: Drivers, Barriers and Challenges of Waste-to-Energy at Krabi Province. Appl. Environ. Res. 2022, 44, 32–43. [Google Scholar] [CrossRef]
- Melaré, A.; González, S.; Faceli, K.; Casadei, V. Technologies and decision support systems to aid solid-waste management: A systematic review. Waste Manag. 2017, 59, 567–584. [Google Scholar] [CrossRef]
- Patil, S.C.; Schulze-Netzer, C.; Korpås, M. Current and emerging waste-to-energy technologies: A comparative study with multi-criteria decision analysis. Smart Energy 2024, 16, 100157. [Google Scholar] [CrossRef]
- Varjani, S. Efficient removal of tar employing dolomite catalyst in gasification: Challenges and opportunities. Sci. Total Environ. 2022, 836, 155721. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Khatun, M.; Arefin, M.; Islam, M.; Hassan, M. Waste to energy: An experimental study of utilizing the agricultural residue, MSW, and e-waste available in Bangladesh for pyrolysis conversion. Heliyon 2021, 7, e08530. [Google Scholar] [CrossRef]
- Lackner, M.; Fei, Q.; Guo, S.; Yang, N.; Guan, X.; Hu, P. Biomass gasification as a scalable, green route to combined heat and power (CHP) and synthesis gas for materials: A review. Fuels 2024, 5, 625–649. [Google Scholar] [CrossRef]
- Neves, A.; Godina, R.; Azevedo, S.; Matias, J. Current status, emerging challenges, and future prospects of industrial symbiosis in Portugal. Sustainability 2019, 11, 5497. [Google Scholar] [CrossRef]
- Al-Ghouti, M.; Khan, M.; Nasser, M.; Al-Saad, K.; Heng, O. Recent advances and applications of municipal solid waste bottom and fly ashes: Insights into sustainable management and conservation of resources. Environ. Technol. Innov. 2021, 21, 101267. [Google Scholar] [CrossRef]
- Mignogna, D.; Szabó, M.; Ceci, P.; Avino, P. Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition. Sustainability 2024, 16, 7036. [Google Scholar] [CrossRef]
- Lisbona, P.; Pascual, S.; Pérez, V. Waste to energy: Trends and perspectives. Chem. Eng. J. Adv. 2023, 14, 100494. [Google Scholar] [CrossRef]
- Kundariya, N.; Mohanty, S.; Varjani, S.; Ngo, H.; Wong, J.; Taherzadeh, M.; Chang, J.S.; Ng, H.; Kim, S.; Bui, X. A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresour. Technol. 2021, 342, 125982. [Google Scholar] [CrossRef]
- Wünsch, C.; Tsybina, A. Municipal solid waste management in Russia: Potentials of climate change mitigation. International J. Environ. Sci. Technol. 2022, 19, 27–42. [Google Scholar] [CrossRef]
- Adeleke, O.; Akinlabi, S.; Jen, T.; Dunmade, I. Sustainable utilization of energy from waste: A review of potentials and challenges of Waste-to-energy in South Africa. Int. J. Green Energy 2021, 18, 1550–1564. [Google Scholar] [CrossRef]
- Zafar, A.; Shahid, S.; Nawaz, M.; Mustafa, J.; Iftekhar, S.; Ahmed, I.; Tabraiz, S.; Bontempi, E.; Assad, M.; Ghafoor, F.; et al. Waste to energy feasibility, challenges, and perspective in municipal solid waste incineration and implementation: A case study for Pakistan. Chem. Eng. J. Adv. 2024, 18, 100595. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Roy, H.; Alam, S.; Bin-Masud, R.; Prantika, T.; Pervez, M.; Islam, M.; Naddeo, V. A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective. Sustainability 2022, 14, 10265. [Google Scholar] [CrossRef]
- Wilson, D.; Paul, J.; Ramola, A.; Silva Filho, C. Unlocking the significant worldwide potential of better waste and resource management for climate mitigation: With particular focus on the Global South. Waste Manag. Res. 2024, 42, 860–872. [Google Scholar] [CrossRef]
- Dhar, H.; Kumar, S.; Kumar, R. A review on organic waste to energy systems in India. Bioresour. Technol. 2017, 245, 1229–1237. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Kumar, A.; Singh, R.; Awwad, F.; Khan, M.; Ismail, E. Sustainable energy recovery from municipal solid wastes: An in-depth analysis of waste-to-energy technologies and their environmental implications in India. Energy Explor. Exploit. 2024, 43, 3–28. [Google Scholar] [CrossRef]
- Marefat, A.; Golzary, A.; Takahashi, F.; Huisingh, D. Financial feasibility and optimization of anaerobic digestion systems for sustainable waste management: A comprehensive global analysis. Clean. Environ. Syst. 2025, 19, 100339. [Google Scholar] [CrossRef]
- Mbazima, S.; Masekameni, M.; Mmereki, D. Waste-to-energy in a developing country: The state of landfill gas to energy in the Republic of South Africa. Energy Explor. Exploit. 2022, 40, 1287–1312. [Google Scholar] [CrossRef]
- Silva, M.; Przybysz, A.; Piekarski, C. Location as a key factor for waste to energy plants. J. Clean. Prod. 2022, 379, 134386. [Google Scholar] [CrossRef]
- Istrate, I.; Iribarren, D.; Gálvez-Martos, J.; Dufour, J. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resour. Conserv. Recycl. 2020, 157, 104778. [Google Scholar] [CrossRef]
- Ma, W.; Wenga, T.; Frandsen, F.; Yan, B.; Chen, G. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Prog. Energy Combust. Sci. 2020, 76, 100789. [Google Scholar] [CrossRef]
- Gad, N.; El-Dash, K.; Attia, T.; Dokhan, S. Toward sustainable waste-to-energy solutions: Risk allocation and technological innovations in public-private partnerships. HBRC J. 2024, 20, 829–847. [Google Scholar] [CrossRef]
- Adlmaier, D.; Sellitto, M. Returnable packaging for transportation of manufactured goods: A case study in reverse logistics. Production 2007, 17, 395–406. [Google Scholar] [CrossRef]
- Thakur, A.; Kumari, S.; Borker, S.; Prashant, S.; Kumar, A.; Kumar, R. Solid Waste Management in Indian Himalayan Region: Current Scenario, Resource Recovery, and Way Forward for Sustainable Development. Front. Energy Res. 2021, 9, 609229. [Google Scholar] [CrossRef]
- Korai, M.; Ali, M.; Lei, C.; Mahar, R.; Yue, D. Comparison of MSW management practices in Pakistan and China. J. Mater. Cycles Waste Manag. 2020, 22, 443–453. [Google Scholar] [CrossRef]
- Bjelić, D.; Markić, D.; Prokić, D.; Malinović, B.; Panić, A. “Waste to energy” as a driver towards a sustainable and circular energy future for the Balkan countries. Energy Sustain. Soc. 2024, 14, 3. [Google Scholar] [CrossRef]
- Ram, C.; Kumar, A.; Rani, P. Municipal solid waste management: A review of waste to energy (WtE) approaches. BioResources 2021, 16, 4275–4320. [Google Scholar] [CrossRef]
- Khalid, H.; Zhang, H.; Liu, C.; Li, W.; Abuzar, M.; Amin, F.; Liu, G.; Chen, C. PEST (political, environmental, social-technical) analysis of the development of the waste-to-energy anaerobic digestion industry in China as a representative for developing countries. Sustain. Energy Fuels 2020, 4, 1048–1062. [Google Scholar] [CrossRef]
- Pujara, Y.; Pathak, P.; Sharma, A.; Govani, J. Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. J. Environ. Manag. 2019, 248, 109238. [Google Scholar] [CrossRef]
- Peng, X.; Jiang, Y.; Chen, Z.; Osman, A.; Farghali, M.; Rooney, D.; Yap, P. Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review. Environ. Chem. Lett. 2023, 21, 765–801. [Google Scholar] [CrossRef]
- Shovon, S.; Akash, F.; Rahman, W.; Rahman, M.; Chakraborty, P.; Hossain, H.; Monir, M.U. Strategies of managing solid waste and energy recovery for a developing country—A review. Heliyon 2024, 10, e08530. [Google Scholar] [CrossRef]
- Kibria, M.; Masuk, N.; Safayet, R.; Nguyen, H.; Mourshed, M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Int. J. Environ. Res. 2023, 17, 20. [Google Scholar] [CrossRef]
- Chanthakett, A.; Arif, M.; Khan, M.; Oo, A. Performance assessment of gasification reactors for sustainable management of municipal solid waste. J. Environ. Manag. 2021, 291, 112661. [Google Scholar] [CrossRef]
- Singh, M.; Singh, M.; Singh, S. Tackling municipal solid waste crisis in India: Insights into cutting-edge technologies and risk assessment. Sci. Total Environ. 2024, 917, 170453. [Google Scholar] [CrossRef]
- Thomas, P.; Soren, N. An overview of municipal solid waste-to-energy application in Indian scenario. Environ. Dev. Sustain. 2020, 22, 575–592. [Google Scholar] [CrossRef]
- Shin, D.; Lee, J.; Son, J.; Yun, Y.; Song, Y.; Song, J. Intelligent Combustion Control in Waste-to-Energy Facilities: Enhancing Efficiency and Reducing Emissions Using AI and IoT. Energies 2024, 17, 4634. [Google Scholar] [CrossRef]
- Sarvestani, M.; Sisani, F.; Ebrahimzadehsarvestani, E.; Di Maria, F. Evaluating Methanol and Liquid CO2 Recovery from Waste-to-Energy Facilities: A Life Cycle Assessment Perspective. Energy Convers. Manag. 2024, 319, 118921. [Google Scholar] [CrossRef]
- Nubi, O.; Morse, S.; Murphy, R.J. Electricity generation from municipal solid waste in Nigeria: A prospective LCA study. Sustainability 2022, 14, 9252. [Google Scholar] [CrossRef]
- Medina-Mijangos, R.; De Andrés, A.; Guerrero-Garcia-Rojas, H.; Seguí-Amórtegui, L. A methodology for the technical-economic analysis of municipal solid waste systems based on social cost-benefit analysis with a valuation of externalities. Environ. Sci. Pollut. Res. 2021, 28, 18807–18825. [Google Scholar] [CrossRef] [PubMed]
- Rafew, S.; Rafizul, I. Application of system dynamics model for municipal solid waste management in Khulna city of Bangladesh. Waste Manag. 2021, 129, 1–19. [Google Scholar] [CrossRef]
- Ghanbari, F.; Kamalan, H.; Sarraf, A. Predicting solid waste generation based on the ensemble artificial intelligence models under uncertainty analysis. J. Mater. Cycles Waste Manag. 2023, 25, 920–930. [Google Scholar] [CrossRef]
- Ferrão, C.; Moraes, J.; Fava, L.; Furtado, J.; Machado, E.; Rodrigues, A.; Sellitto, M. Optimizing routes of municipal waste collection: An application algorithm. Manag. Environ. Qual. Int. J. 2024, 35, 965–985. [Google Scholar] [CrossRef]
- Solaz, H.; Artacho-Ramírez, M.; Cloquell-Ballester, V.A.; Catalán, C. Prioritizing action plans to save resources and better achieve municipal solid waste management KPIs: An urban case study. J. Air Waste Manag. Assoc. 2023, 73, 705–721. [Google Scholar] [CrossRef] [PubMed]
- Mersico, L.; Aureli, S.; Foschi, E. Exploring the role of digital platforms in promoting value co-creation: Evidence from the Italian municipal solid waste management system. Sustain. Account. Manag. Policy J. 2025. [Google Scholar] [CrossRef]

| Attribute | Description |
|---|---|
| Problem | What is the problem? MWS management |
| Intervention | What kind of intervention is investigated? The use of WtE in MSW management. |
| Comparison | To what alternatives compare? Various technologies that are available to WtE. |
| Outcome | What is the desired outcome? Scenarios and guidelines for new implementations. |
| Section and Topic | Item | Checklist Item |
|---|---|---|
| Title | 1 | Waste-to-energy implementations from municipal solid waste sources. |
| Background | ||
| Objectives | 2 | To answer three questions: IRQ1: What are the main WtE technologies for MSW management? IRQ2: How can WtE technologies contribute to adequate MSW management? IRQ3: What are the challenges, opportunities, and drivers for adopting WtE technologies in MSW management? |
| Methods | ||
| Eligibility criteria | 3 | Presence of the search terms “waste to energy” or “municipal solid waste” in the title, abstract, or keywords; articles in English, published only in journals between 2017 and 2024; reviews; and fully accessible. |
| Information sources | 4 | ScienceDirect (76), Web of Science (478), Scopus (488) databases |
| Risk of bias | 5 | More than one database was employed. Four reviewers applied consistent eligibility criteria to all studies. No filter related to the area of application was applied to avoid bias. |
| Synthesis of results | 6 | Full reading of the sampled articles. |
| Results | ||
| Included studies | 7 | 115 studies fully complied with the objectives. |
| Synthesis of results | 8 | In addition to the 115 retrieved studies, three further studies retrieved from the reference lists were also incorporated into the sample. Additionally, 61, 51, and 45 documents were linked to IRQ1, IRQ2, and IRQ3, respectively. |
| Discussion | ||
| Limitations of evidence | 9 | Exclusion of proceedings, grey literature, and articles not in English. |
| Interpretation | 10 | A clear, state-of-the-art, and consistent benchmarking has emerged from the review. |
| Other | ||
| Funding | 11 | CNPq, grant number 303496/2022-3, funded the research. |
| Registration | 12 | Do not apply. |
| Technology | Process | Raw-Material | Waste | Output |
|---|---|---|---|---|
| Incineration | Burning of mass at temperatures >1000 °C | Mixed MSW and RDF | Bottom ash, fly ash, metals, and atmospheric pollutants | Heat and electricity |
| Gasification | Conventional method, temperature 750 °C; plasma arc, 4000–12,000 °C | Mixed MSW and RDF | Bottom ash, atmospheric pollutants | Hydrogen, methane, syngas, and electricity |
| Pyrolysis | At temperatures between 300 and 800 °C, with high pressure and in the absence of oxygen | MSW separated by type, organic waste | Atmospheric pollutants | Charcoal, pyrolysis oil, gases, aerosols, syngas, and electricity |
| Fermentation | Absence of oxygen: Dark fermentation uses bacteria without light; photo-fermentation uses bacteria with light | Organic MSW with high sugar content | Liquid residues, wastewater, and digestates | Ethanol, hydrogen, biodiesel, and electricity |
| Anaerobic Digestion | Treated by microorganisms in the absence of oxygen | Organic MSW | Wastewater, liquid residues, digestates, non-compostable materials (e.g., metal, plastics) | Methane and electricity |
| Landfill with Gas Capture | Natural decomposition of MSW | Organic MSW | Compost | Methane and electricity |
| Microbial Fuel Cell | Catalytic reaction of microorganisms with bacteria | Organic MSW | CO2, water | Electricity |
| Esterification | Chemical reaction between an acid and an alcohol in the presence of an acid catalyst to create an ester | Residual oil (e.g., residual coconut oil) | Water | Ethanol, biodiesel, and electricity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, M.S.; Farina, A.G.; Kadel, N., Jr.; Sellitto, M.A. Alternatives and Benchmarking for Implementations of Waste-to-Energy from Municipal Solid Waste: A Systematic Review. Resources 2025, 14, 185. https://doi.org/10.3390/resources14120185
de Lima MS, Farina AG, Kadel N Jr., Sellitto MA. Alternatives and Benchmarking for Implementations of Waste-to-Energy from Municipal Solid Waste: A Systematic Review. Resources. 2025; 14(12):185. https://doi.org/10.3390/resources14120185
Chicago/Turabian Stylede Lima, Maria Soares, André Gobbi Farina, Nelson Kadel, Jr., and Miguel Afonso Sellitto. 2025. "Alternatives and Benchmarking for Implementations of Waste-to-Energy from Municipal Solid Waste: A Systematic Review" Resources 14, no. 12: 185. https://doi.org/10.3390/resources14120185
APA Stylede Lima, M. S., Farina, A. G., Kadel, N., Jr., & Sellitto, M. A. (2025). Alternatives and Benchmarking for Implementations of Waste-to-Energy from Municipal Solid Waste: A Systematic Review. Resources, 14(12), 185. https://doi.org/10.3390/resources14120185

