Spatial Distribution, Health Risks and Heavy Metal Pollution Assessment of Surface Water Under Multiple Anthropogenic Stressors: Case Study in Middle Moulouya Watershed, Morocco
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Chemical and Physical Analysis
2.4. Evaluation of Surface Water Pollution
2.4.1. Contamination Index (CI)
2.4.2. Heavy Metal Pollution Index (HPI)
2.4.3. Heavy Metal Index (MI)
2.4.4. Ecological Risk Index (ERI)
2.4.5. Human Health Risk Assessment
- Noncarcinogenic health risk assessment
- Carcinogenic risk assessment
2.5. Statistical Analysis
3. Results and Discussions
3.1. Physical and Chemical Parameters of Surface Water
3.2. Heavy Metals of Surface Water
3.3. Multivariate Statistical Analysis
3.3.1. Correlation Matrix Analysis
3.3.2. Principal Component Analysis (PCA)
3.4. Pollution Evaluation Using HM Pollution Indices
3.4.1. Heavy Metal Pollution Index
3.4.2. Contamination Index (CI)
3.4.3. Heavy Metal Index (MI)
3.4.4. Ecological Risk Index (ERI)
3.4.5. Human Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dippong, T.; Mihali, C.; Marian, M.; Rosca, O.M.; Resz, M.-A. Correlations between Chemical, Hydrological and Biotic Factors in Rivers from the Protected Area of Tisa Superioară, Romania. Process Saf. Environ. Prot. 2023, 176, 40–55. [Google Scholar] [CrossRef]
- Azadi, S.; Amiri, H.; Mooselu, M.G.; Liltved, H.; Castro-Muñoz, R.; Sun, X.; Boczkaj, G. Network Design for Surface Water Quality Monitoring in a Road Construction Project Using Gamma Test Theory. Water Resour. Ind. 2021, 26, 100162. [Google Scholar] [CrossRef]
- Dippong, T.; Resz, M.-A. Heavy Metal Contamination Assessment and Potential Human Health Risk of Water Quality of Lakes Situated in the Protected Area of Tisa, Romania. Heliyon 2024, 10, e28860. [Google Scholar] [CrossRef]
- Zaffani, A.G.; Cruz, N.R.; Taffarello, D.; Mendiondo, E.M. Uncertainties in the Generation of Pollutant Loads in the Context of Disaster Risk Management Using Brazilian Nested Catchment Experiments under Progressive Change of Land Use and Land Cover. J. Phys. Chem. Biophys. 2015, 5, 2161–2398. [Google Scholar]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of Water Quality Using Water Quality Index (WQI) Method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef]
- Elbaz-Poulichet, F.; Bruneel, O.; Casiot, C. The Carnoules Mine. Generation of As-Rich Acid Mine Drainage, Natural Attenuation Processes and Solutions for Passive in-Situ Remediation. In Proceedings of the Difpolmine (Diffuse Pollution from Mining Activities), Montpellier, France, 12–14 December 2006. [Google Scholar]
- Biswas, P.K.; Uddin, N.; Alam, S.; Sultana, S.; Ahmed, T. Evaluation of Heavy Metal Pollution Indices in Irrigation and Drinking Water Systems of Barapukuria Coal Mine Area, Bangladesh. Am. J. Water Resour. 2017, 5, 146–151. [Google Scholar]
- Amar, H.; Benzaazoua, M.; Elghali, A.; Bussière, B.; Duclos, M. Upstream Environmental Desulphurisation and Valorisation of Waste Rocks as a Sustainable AMD Management Approach. J. Geochem. Explor. 2020, 215, 106555. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, X.; Chen, H.; Liu, Y.; Cui, Z. Effects of Agriculture and Animal Husbandry on Heavy Metal Contamination in the Aquatic Environment and Human Health in Huangshui River Basin. Water 2022, 14, 549. [Google Scholar] [CrossRef]
- Cengiz, M.F.; Kilic, S.; Yalcin, F.; Kilic, M.; Gurhan Yalcin, M. Evaluation of Heavy Metal Risk Potential in Bogacayi River Water (Antalya, Turkey). Environ. Monit. Assess. 2017, 189, 248. [Google Scholar] [CrossRef]
- Nasrabadi, T. An Indexapproach Tometallic Pollution in Riverwaters. Int. J. Environ. Res. 2015, 9, 385–394. [Google Scholar]
- Le, T.V.; Nguyen, B.T. Heavy Metal Pollution in Surface Water Bodies in Provincial Khanh Hoa, Vietnam: Pollution and Human Health Risk Assessment, Source Quantification, and Implications for Sustainable Management and Development. Environ. Pollut. 2024, 343, 123216. [Google Scholar] [CrossRef] [PubMed]
- Astatkie, H.; Ambelu, A.; Beyene, E.M. Sources and Level of Heavy Metal Contamination in the Water of Awetu Watershed Streams, Southwestern Ethiopia. Heliyon 2021, 7, e06385. [Google Scholar] [CrossRef] [PubMed]
- Miyittah, M.K.; Tulashie, S.K.; Tsyawo, F.W.; Sarfo, J.K.; Darko, A.A. Assessment of Surface Water Quality Status of the Aby Lagoon System in the Western Region of Ghana. Heliyon 2020, 6, e04466. [Google Scholar] [CrossRef] [PubMed]
- Laghlimi, M.; Elouadihi, N.; Baghdad, B.; Moussadek, R.; Laghrour, M.; Bouabdli, A. Influence of Compost and Chemical Fertilizer on Multi-MetaContaminated Mine Tailings Phytostabilization by Atriplex Nummularia. Ecol. Eng. Environ. Technol. 2022, 23, 204–215. [Google Scholar] [CrossRef]
- Elouadihi, N.; Laghlimi, M.; Moussadek, R.; Laghrour, M.; Bouabdli, A.; Baghdad, B. Phytoremediation Study of Mining Soils: Case of the Mibladen and Zaida Mine (High Moulouya, Morocco). J. Exp. Biol. Agric. Sci. 2022, 10, 1391–1400. [Google Scholar] [CrossRef]
- El Azhari, A.; Rhoujjati, A.; EL Hachimi, M.L. Assessment of Heavy Metals and Arsenic Contamination in the Sediments of the Moulouya River and the Hassan II Dam Downstream of the Abandoned Mine Zeïda (High Moulouya, Morocco). J. Afr. Earth Sci. 2016, 119, 279–288. [Google Scholar] [CrossRef]
- Ech-Charef, A.; Dekayir, A.; Jordán, G.; Rouai, M.; Chabli, A.; Qarbous, A.; El Houfy, F.Z. Soil Heavy Metal Contamination in the Vicinity of the Abandoned Zeïda Mine in the Upper Moulouya Basin, Morocco. Implications for Airborne Dust Pollution under Semi-Arid Climatic Conditions. J. Afr. Earth Sci. 2023, 198, 104812. [Google Scholar] [CrossRef]
- Bouabdli, A.; Saidi, N.; M’baret, S.; Escarre, J.; Leblanc, M. Oued Moulouya: Vecteur de Transport Des Métaux Lourds (Maroc). Revue des Sciences de l’Eau 2005, 18, 199–213. [Google Scholar] [CrossRef]
- Bouzekri, S.; El Hachimi, M.L.; Kara, K.; El Mahi, M.; Lotfi, E.M. Metal Pollution Assessment of Surface Water from the Abandoned Pb Mine Zaida, High Moulouya-Morocco. Geosystem Eng. 2020, 23, 226–233. [Google Scholar] [CrossRef]
- Iavazzo, P.; Adamo, P.; Boni, M.; Hillier, S.; Zampella, M. Mineralogy and Chemical Forms of Lead and Zinc in Abandoned Mine Wastes and Soils: An Example from Morocco. J. Geochem. Explor. 2012, 113, 56–67. [Google Scholar] [CrossRef]
- Mimouni, Y.; Chafi, A.; Bouabdli, A.; Baghdad, B.; Deliege, J.F. Assessment of Multiple Trace Metal Fluxes in a Semi-Arid Watershed Containing Mine Tailing, Using a Multiple Tool Approach (Zaida Mine, Upper Moulouya Watershed, Morocco). Hydrology 2024, 11, 105. [Google Scholar] [CrossRef]
- Iavazzo, P.; Ducci, D.; Adamo, P.; Trifuoggi, M.; Migliozzi, A.; Boni, M. Impact of Past Mining Activity on the Quality of Water and Soil in the High Moulouya Valley (Morocco). Water Air Soil Pollut. 2012, 223, 573–589. [Google Scholar] [CrossRef]
- El Hachimi, M.L.; Bouabdli, A.; Fekhaoui, M. Les Rejets Miniers de Traitement: Caractérisation, Capacité Pol Luante et Impacts Environnementaux, Mine Zeïda, Mine Mibladen, Haute Moulouya (Maroc). Environ. Ingénierie Développement, 2013; N°63- mars 2013, 32–42. [Google Scholar] [CrossRef]
- Ben Ali, M.; El Fadili, H.; El Mahi, M.; Lotfi, E.M.; Fannakh, A.; Chahine, A. Geochemistry Pollution Status and Ecotoxicological Risk Assessment of Heavy Metal(Oid)s in Soil Influenced by Co-Landfilling of MSW and Sewage Sludge, Morocco. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100859. [Google Scholar] [CrossRef]
- Essien, J.P.; Inam, E.D.; Ikpe, D.I.; Udofia, G.E.; Benson, N.U. Ecotoxicological Status and Risk Assessment of Heavy Metals in Municipal Solid Wastes Dumpsite Impacted Soil in Nigeria. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100215. [Google Scholar] [CrossRef]
- Backman, B.; Bodiš, D.; Lahermo, P.; Rapant, S.; Tarvainen, T. Application of a Groundwater Contamination Index in Finland and Slovakia. Environ. Geol. 1998, 36, 55–64. [Google Scholar] [CrossRef]
- Edet, A.E.; Offiong, O.E. Evaluation of Water Quality Pollution Indices for Heavy Metal Contamination Monitoring. A Study Case from Akpabuyo-Odukpani Area, Lower Cross River Basin (Southeastern Nigeria). GeoJournal 2002, 57, 295–304. [Google Scholar] [CrossRef]
- Prasad, M.; Sunitha, V.; Reddy, Y.S.; Suvarna, B.; Reddy, B.M.; Reddy, M.R. Data on Water Quality Index Development for Groundwater Quality Assessment from Obulavaripalli Mandal, YSR District, AP India. Data Brief. 2019, 24, 103846. [Google Scholar] [CrossRef]
- Pan, Y.; She, D.; Ding, J.; Abulaiti, A.; Zhao, J.; Wang, Y.; Liu, R.; Wang, F.; Shan, J.; Xia, Y. Coping with Groundwater Pollution in High-Nitrate Leaching Areas: The Efficacy of Denitrification. Environ. Res. 2024, 250, 118484. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Dakak, H.; Zouahri, A.; Oueld Lhaj, M.; Mouhir, L. Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 2417. [Google Scholar] [CrossRef]
- Alam, R.; Ahmed, Z.; Howladar, M.F. Evaluation of Heavy Metal Contamination in Water, Soil and Plant around the Open Landfill Site Mogla Bazar in Sylhet, Bangladesh. Groundw. Sustain. Dev. 2020, 10, 100311. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Megremi, I. Contamination of the Soil–Groundwater–Crop System: Environmental Risk and Opportunities. Minerals 2021, 11, 775. [Google Scholar] [CrossRef]
- Egbueri, J.C. Groundwater Quality Assessment Using Pollution Index of Groundwater (PIG), Ecological Risk Index (ERI) and Hierarchical Cluster Analysis (HCA): A Case Study. Groundw. Sustain. Dev. 2020, 10, 100292. [Google Scholar] [CrossRef]
- Usepa, M. Guidelines for Carcinogen Risk Assessment. In Risk Assessment Forum; US Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- Passarelli, I.; Mora-Silva, D.; Jimenez-Gutierrez, M.; Logroño-Naranjo, S.; Hernández-Allauca, D.; Valdez, R.U.; Avalos Peñafiel, V.G.; Tierra Pérez, L.P.; Sanchez-Salazar, M.; Tobar Ruiz, M.G.; et al. Hg Pollution in Groundwater of Andean Region of Ecuador and Human Health Risk Assessment. Resources 2024, 13, 84. [Google Scholar] [CrossRef]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk Analysis of Heavy Metal Concentration in Surface Waters across the Rural-Urban Interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef]
- Sharma, A.; Ganguly, R.; Kumar Gupta, A. Impact Assessment of Leachate Pollution Potential on Groundwater: An Indexing Method. J. Environ. Eng. 2020, 146, 05019007. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of Heavy-Metal Pollution in Three Different Indian Water Bodies by Combination of Multivariate Analysis and Water Pollution Indices. Human. Ecol. Risk Assess. Int. J. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Meybeck, M.; Helmer, R. The Quality of Rivers: From Pristine Stage to Global Pollution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 75, 283–309. [Google Scholar] [CrossRef]
- Yang, L.; Song, X.; Zhang, Y.; Han, D.; Zhang, B.; Long, D. Characterizing Interactions between Surface Water and Groundwater in the Jialu River Basin Using Major Ion Chemistry and Stable Isotopes. Hydrol. Earth Syst. Sci. 2012, 16, 4265–4277. [Google Scholar] [CrossRef]
- Karakaya, N.; Evrendilek, F. Water Quality Time Series for Big Melen Stream (Turkey): Its Decomposition Analysis and Comparison to Upstream. Environ. Monit. Assess. 2010, 165, 125–136. [Google Scholar] [CrossRef]
- Osibanjo, O.; Daso, A.P.; Gbadebo, A.M. The Impact of Industries on Surface Water Quality of River Ona and River Alaro in Oluyole Industrial Estate, Ibadan, Nigeria. Afr. J. Biotechnol. 2011, 10, 696–702. [Google Scholar]
- Lions, J. Etude Hydrogéochimique de La Mobilité Depoluluants Inorganiques Dans Des Sédiments de Curage Mis En Dépôt: Expérimentations, Études in Situ et Modélisation. Ph.D. Thesis, École Nationale Supérieure Des Mines de Paris, Paris, France, 2004. [Google Scholar]
- Al-Khashman, O.A. Assessment of the Spring Water Quality in The Shoubak Area, Jordan. Environmentalist 2008, 28, 203–215. [Google Scholar] [CrossRef]
- Mahjoub, M.; Fadlaoui, S.; El Maadoudi, M.; Smiri, Y. Mercury, Lead, and Cadmium in the Muscles of Five Fish Species from the Mechraâ-Hammadi Dam in Morocco and Health Risks for Their Consumers. J. Toxicol. 2021, 2021, 8865869. [Google Scholar] [CrossRef]
- Obasi, P.N.; Akudinobi, B.B. Potential Health Risk and Levels of Heavy Metals in Water Resources of Lead–Zinc Mining Communities of Abakaliki, Southeast Nigeria. Appl. Water Sci. 2020, 10, 1–23. [Google Scholar] [CrossRef]
- Sinha, D.; Datta, S.; Mishra, R.; Agarwal, P.; Kumari, T.; Adeyemi, S.B.; Maurya, A.K.; Ganguly, S.; Atique, U.; Seal, S. Negative Impacts of Arsenic on Plants and Mitigation Strategies. Plants 2023, 12, 1815. [Google Scholar] [CrossRef] [PubMed]
- El Fahem, M.; Benzaouak, A.; Zouiten, H.; Serghini, A.; Fekhaoui, M. Hydrogeochemical Assessment of Mine Water Discharges from Mining Activity. AIMS Environ. Sci. 2021, 8, 60–85. [Google Scholar] [CrossRef]
- Aggett, J.; Aspell, A.C. Arsenic Contamination in an Apple Orchard. Environ. Pollut. Ser. A Ecol. Biol. 1980, 22, 39–46. [Google Scholar] [CrossRef]
- Wong, C.K.; Renshaw, C.E.; Feng, X.; Sturup, S. New Hampshire Apple Orchards as a Source of Arsenic Contamination. Am. Geophys. Union Spring Meet. 2002, 2002, H42A-05. [Google Scholar]
- Cadwalader, G.O.; Renshaw, C.E.; Jackson, B.P.; Magilligan, F.J.; Landis, J.D.; Bostick, B.C. Erosion and Physical Transport via Overland Flow of Arsenic and Lead Bound to Silt-Sized Particles. Geomorphology 2011, 128, 85–91. [Google Scholar] [CrossRef]
- Singh, A.; Kostova, I. Health Effects of Heavy Metal Contaminants Vis-à-Vis Microbial Response in Their Bioremediation. Inorganica Chim. Acta 2024, 568, 122068. [Google Scholar] [CrossRef]
- Talhaoui, A.; El Hmaidi, A.; Jaddi, H.; Ousmana, H.; Manssouri, I. Calcul de L’indice de qualité de L’eau (IQE) pour L’évaluation de La qualité physico-chimique des eaux superficielles de L’oued Moulouya (NE, maroc). Eur. Sci. J. 2020, 16, 64–85. [Google Scholar] [CrossRef]
- El Hmaidi, A.; Talhaoui, A.; Manssouri, I.; Jaddi, H.; Ben-Daoud, M.; Kasse, Z.; El Ouali, A.; Essahlaoui, A. Assessment of the Physicochemical Water Quality of the Moulouya River, Morocco, Using the SEQ-Eau Index. Environ. Monit. Assess. 2022, 194, 37. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index; Helgoland Marine Research: Helgoland, Germany, 1980; Volume 33. [Google Scholar]
- Taybi, A.F.; Mabrouki, Y.; Berrahou, A.; Chaabane, K. Évolution Spatiotemporelle Des Paramètres Physico-Chimiques de La Moulouya [Spatiotemporal Evolution of Physicochemical Parameters of the Moulouya]. J. Mater. Environ. Sci. 2016, 7, 272–284. [Google Scholar]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Dakak, H.; Manhou, K.; Zouahri, A. Spatial Dynamics and Ecotoxicological Health Hazards of Toxic Metals in Surface Water Impacted by Agricultural Runoff: Insights from Gis-Based Risk Assessment in the Sebou Basin, Morocco 2025. Available online: https://ssrn.com/abstract=5117178 (accessed on 23 November 2025). [CrossRef]
- Karroum, L.A.; El Baghdadi, M.; Barakat, A.; Meddah, R.; Aadraoui, M.; Oumenskou, H.; Ennaji, W. Hydrochemical Characteristics and Water Quality Evaluation of the Srou River and Its Tributaries (Middle Atlas, Morocco) for Drinking and Agricultural Purposes. Desalination Water Treat. 2019, 146, 152–164. [Google Scholar] [CrossRef]
- Sanae, B.; Abbou Mohammed, B.; Nisrine, I.; Youness, G.; Nariman, O.; Azeddin, E.B.; Mustapha, T.; Hanane, T.; Zakia, R. Assessment of Surface Water Quality: Case Study of Oued Fez Catchment Areas (Morocco). Environ. Sustain. Indic. 2024, 21, 100326. [Google Scholar] [CrossRef]
- Mechouet, O.; Bouras, A.E.F.; Benaissa, N.; Hamadouche, Y.A.; Haddad, F.Z.; Dimache, A. Assessing Heavy Metal Contamination In Surface Water And Sediments Of The Tafna River (North-West Of Algeria). Pollution 2024, 10, 119–133. [Google Scholar] [CrossRef]
- Vuković, Ž.; Radenković, M.; Stanković, S.J.; Vuković, D. Distribution and Accumulation of Heavy Metals in the Water and Sediments of the River Sava. J. Serbian Chem. Soc. 2011, 76, 795–803. [Google Scholar] [CrossRef]
- Frankowski, M.; Sojka, M.; Zioła-Frankowska, A.; Siepak, M.; Murat-Błałejewska, S. Distribution of Heavy Metals in the Mała Wełna River System (Western Poland). Oceanol. Hydrobiol. Stud. 2009, 38, 51–61. [Google Scholar] [CrossRef]
- Errochdi, S.; Bennas, N.; Belqat, B.; Majida, E.A. Étude de La Qualité Physicochimique et Microbiologique de Deux Réseaux Hydrographiques Nord Marocains: Laou et Tahaddart. Mediterranee 2012, 118, 41–45. [Google Scholar] [CrossRef]
- Ben-Daoud, M.; Mouhaddach, O.; Es Sahlaoui, A. Conception d’un SIG Pour l’évaluation de l’impact Des Activités Anthropiques Sur La Qualité Des Eaux Superficielles de La Ville de Meknès (Maroc). Cah. Assoc. Sci. Eur. Pour Eau Santé 2011, 16, 17–25. [Google Scholar] [CrossRef]
- Elmadani, F.; El Allaoui, N.; Taleb, M.; Rais, Z. Identification of the Quality of Sur Face Waters in the City of Fezby the SEQGIS Approach and Analysis of Variance. Moroc. J. Chem. 2019, 7, 673–682. [Google Scholar]
- Ocheli, A.; Otuya, O.B.; Umayah, S.O. Appraising the Risk Level of Physicochemical and Bacteriological Twin Contaminants of Water Resources in Part of the Western Niger Delta Region. Environ. Monit. Assess. 2020, 192, 324. [Google Scholar] [CrossRef]
- Oueld Lhaj, M.; Moussadek, R.; Mouhir, L.; Mdarhri Alaoui, M.; Sanad, H.; Iben Halima, O.; Zouahri, A. Assessing the Evolution of Stability and Maturity in Co-Composting Sheep Manure with Green Waste Using Physico-Chemical and Biological Properties and Statistical Analyses: A Case Study of Botanique Garden in Rabat, Morocco. Agronomy 2024, 14, 1573. [Google Scholar] [CrossRef]
- El Fadili, H.; Ben Ali, M.; El Mahi, M.; Cooray, A.T.; Mostapha Lotfi, E. A Comprehensive Health Risk Assessment and Groundwater Quality for Irrigation and Drinking Purposes around Municipal Solid Waste Sanitary Landfill: A Case Study in Morocco. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100698. [Google Scholar] [CrossRef]
- El Fadili, H.; Ben Ali, M.; Rahman, M.N.; El Mahi, M.; Lotfi, E.M.; Louki, S. Bioavailability and Health Risk of Pollutants around a Controlled Landfill in Morocco: Synergistic Effects of Landfilling and Intensive Agriculture. Heliyon 2024, 10, e23729. [Google Scholar] [CrossRef] [PubMed]
- Bouzekri, S.; El Hachimi, M.L.; Touach, N.; El Fadili, H.; El Mahi, M. The Study of Metal (As, Cd, Pb, Zn and Cu) Contamination in Superficial Stream Sediments around of Zaida Mine (High Moulouya-Morocco). J. Afr. Earth Sci. 2019, 154, 49–58. [Google Scholar] [CrossRef]
- Kuznietsov, P.; Biedunkova, O. Application of Multivariate Statistical Techniques for Assessing Spatiotemporal Variations of Heavy Metal Pollution in Freshwater Ecosystems. Water Conserv. Sci. Eng. 2025, 10, 13. [Google Scholar] [CrossRef]
- Edo, G.I.; Samuel, P.O.; Oloni, G.O.; Ezekiel, G.O.; Ikpekoro, V.O.; Obasohan, P.; Ongulu, J.; Otunuya, C.F.; Opiti, A.R.; Ajakaye, R.S. Environmental Persistence, Bioaccumulation, and Ecotoxicology of Heavy Metals. Chem. Ecol. 2024, 40, 322–349. [Google Scholar] [CrossRef]
- Tokatlı, C.; Varol, M. Variations, Health Risks, Pollution Status and Possible Sources of Dissolved Toxic Metal(Loid)s in Stagnant Water Bodies Located in an Intensive Agricultural Region of Turkey. Environ. Res. 2021, 201, 111571. [Google Scholar] [CrossRef] [PubMed]
- Mallongi, A.; Astuti, R.D.P.; Amiruddin, R.; Hatta, M.; Rauf, A.U. Identification Source and Human Health Risk Assessment of Potentially Toxic Metal in Soil Samples around Karst Watershed of Pangkajene, Indonesia. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100634. [Google Scholar] [CrossRef]
- Varol, M.; Karakaya, G.; Sünbül, M.R. Spatiotemporal Variations, Health Risks, Pollution Status and Possible Sources of Dissolved Trace Metal(Loid)s in the Karasu River, Turkey. Environ. Res. 2021, 202, 111733. [Google Scholar] [CrossRef]
- Krime, A.; Saoiabi, S.; Tlemcani, M.; Saoiabi, A.; Carreiro, E.P.; Carrott, M.R. Turning Waste into Wealth: Sustainable Amorphous Silica from Moroccan Oil Shale Ash. Recycling 2025, 10, 143. [Google Scholar] [CrossRef]
- Krime, A.; Eloufir, M.R.; Saoiabi, S.; Tlemcani, M.; Morais, M.; Saoiabi, A. Extracting High Purity Nano-Silica from Oil Shale: Valorising a Neglected Natural Resource. Mater. Res. Bull. 2025, 192, 113561. [Google Scholar] [CrossRef]





| CI Value | CI Class |
|---|---|
| <1 | Low |
| 1 < CI < 3 | Medium |
| >3 | High |
| Parameters | Si (µg/L) | MACi (µg/L) |
|---|---|---|
| Pb | 10 | 10 |
| Zn | 3000 | 3000 |
| Cu | 2000 | 2000 |
| Cd | 3 | 3 |
| Ni | 70 | 70 |
| As | 10 | 10 |
| Cr | 50 | 50 |
| HPI Value | HPI Class |
|---|---|
| <15 | Low water pollution |
| 15 < HPI < 30 | Medium water pollution |
| >30 | High water pollution |
| MI Value | MI Class |
|---|---|
| <0.3 | Very pure |
| 0.3 < MI < 1 | Pure |
| 1 < MI < 2 | Slightly affected |
| 2 < MI < 4 | Moderately affected |
| 4 < MI < 6 | Strongly affected |
| >6 | Seriously affected |
| ERI Value | ERI Class |
|---|---|
| <150 | Low ecological risk |
| 150 < ERI < 300 | Moderate ecological risk |
| 300 < ERI < 600 | Considerable ecological risk |
| >600 | Very high ecological risk |
| Dry Period (Samples n = 11) | Wet Period (Samples n = 11) | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Samples | T °C | pH | Cond (µS/cm) | Pb (µg/L) | Cu (µg/L) | As (µg/L) | Zn (µg/L) | Cd (µg/L) | Ni (µg/L) | T °C | pH | Cond (µS/cm) | Pb (µg/L) | Cu (µg/L) | As (µg/L) | Zn (µg/L) | Cd (µg/L) | Ni (µg/L) |
| S1 | 29.2 | 8.1 | 1522 | 12 | 2.2 | 0.00 | 2.8 | 0.00 | 0.1 | 20.1 | 7.9 | 1655 | 9 | 2.0 | 0.00 | 2.4 | 0.00 | 0.00 |
| S2 | 28.4 | 7.9 | 1370 | 9 | 1.7 | 0.00 | 2.3 | 0.00 | 0.1 | 18.2 | 7.8 | 1466 | 7 | 1.6 | 0.00 | 1.9 | 0.00 | 0.00 |
| S3 | 25.5 | 8.4 | 3150 | 52 | 46 | 43 | 24 | 34 | 4.4 | 15.6 | 8.2 | 3270 | 45 | 39 | 35 | 22.8 | 31 | 3.5 |
| S4 | 27.3 | 8.1 | 2640 | 47 | 37 | 37 | 22.4 | 27 | 3.9 | 17.5 | 8.1 | 2850 | 42 | 33 | 32.6 | 19.3 | 24.4 | 3.10 |
| S5 | 27.9 | 7.7 | 3390 | 54 | 41 | 40 | 17.3 | 32 | 3.3 | 15.1 | 7.3 | 3780 | 49 | 38 | 38.3 | 17 | 27 | 2.80 |
| S6 | 28.1 | 7.5 | 3930 | 46 | 36 | 32 | 14.7 | 28 | 3.1 | 16.9 | 7.1 | 4120 | 38 | 31 | 27 | 13.9 | 25 | 2.63 |
| S7 | 29.4 | 7.2 | 3520 | 35 | 32 | 27 | 12.9 | 22 | 2.9 | 14.1 | 7.6 | 3720 | 32.6 | 29.3 | 23.9 | 12.1 | 17.3 | 2.44 |
| S8 | 28.7 | 7.4 | 3070 | 26 | 29 | 19 | 11 | 19 | 2.2 | 16.7 | 7.4 | 3210 | 21.5 | 26.7 | 17.4 | 10.3 | 14 | 2.09 |
| S9 | 26.5 | 7.3 | 3690 | 29 | 33 | 24 | 9.6 | 21 | 1.8 | 15.5 | 7.5 | 3090 | 25 | 30 | 22.8 | 9.1 | 18.5 | 1.65 |
| S10 | 25.1 | 7.5 | 2960 | 25.9 | 27 | 23.2 | 8.1 | 18 | 1.1 | 13.9 | 7.7 | 2670 | 22 | 24.5 | 20.5 | 7.7 | 14.1 | 0.77 |
| S11 | 27.7 | 7.7 | 2540 | 23.1 | 24.8 | 17.7 | 7.66 | 16.3 | 0.8 | 13.4 | 7.3 | 2470 | 18 | 21.6 | 15.4 | 6.1 | 12.7 | 0.63 |
| Min | 25.1 | 7.2 | 1370 | 9.00 | 1.70 | 0.00 | 2.30 | 0.00 | 0.1 | 13.4 | 7.1 | 1466 | 7 | 1.6 | 0.00 | 1.2 | 0.00 | 0.00 |
| Max | 29.4 | 8.4 | 3930 | 54 | 46 | 43 | 24 | 34 | 4.4 | 20.1 | 8.2 | 3780 | 45 | 39 | 38.3 | 22.8 | 31 | 3.50 |
| Avg | 27.61 | 7.71 | 2889.27 | 32.63 | 28.15 | 23.9 | 12.07 | 19.75 | 2.15 | 16.09 | 7.63 | 2936.45 | 28.1 | 25.2 | 21.2 | 11.1 | 16.7 | 1.80 |
| SD | 1.41 | 0.46 | 827.06 | 15.49 | 14.31 | 14.41 | 7.13 | 11.30 | 1.50 | 2.03 | 0.41 | 838.83 | 14.26 | 12.64 | 12.66 | 6.68 | 10.16 | 1.25 |
| WHO Standards (2017) | - | 6.5–8.5 | 1000 | 10 | 2000 | 10 | 3000 | 3 | 70 | - | 6.5–8.5 | 1000 | 10 | 2000 | 10 | 3000 | 3 | 70 |
| References | Dominant Activities | Maximum Concentrations (µg/L) | |||||
|---|---|---|---|---|---|---|---|
| As | Pb | Ni | Zn | Cu | Cd | ||
| Current study | Agricultural, industrial, domestic discharges | 43 | 54 | 4.4 | 24 | 46 | 34 |
| Sebou River Morocco [58] | Industrial, agricultural, domestic activities | 10.20 | 13.32 | 70.30 | 3100 | 2300 | 3.2 |
| Serou River Morocco [59] | Industrial, agricultural runoff, domestic | - | 24 | 23 | 28 | 104 | 18 |
| Oued Beht Morocco [49] | Mining activities | 3.6 | 2.4 | 6 | 5 | 0.2 | |
| Oued Fez Morocco [60] | Industrial, domestic | 6 | 18 | 139 | 1.6 | 72 | 85 |
| Tafna River Algeria [61] | Industrial, domestic wastewater | - | 2.71 | - | 6.71 | 3 | 3.99 |
| Sava River Serbia [62] | Industrial, agricultural, domestic wastewater | - | 6.05 | - | 61.6 | 22.8 | 1.35 |
| Mala Welna River Poland [63] | Industrial, sewage | - | 40 | 15 | 115 | 89 | 3 |
| Variables | Cu | Zn | Pb | Cd | Ni | As | T °C | pH | Cond (µs/cm) |
|---|---|---|---|---|---|---|---|---|---|
| Cu | 1 | ||||||||
| Zn | 0.964 | 1 | |||||||
| Pb | 0.982 | 0.964 | 1 | ||||||
| Cd | 0.970 | 0.943 | 0.989 | 1 | |||||
| Ni | 0.961 | 0.998 | 0.961 | 0.945 | 1 | ||||
| As | 0.980 | 0.961 | 0.980 | 0.973 | 0.963 | 1 | |||
| T °C | −0.391 | −0.282 | −0.282 | −0.264 | −0.292 | −0.401 | 1 | ||
| pH | 0.101 | 0.128 | 0.050 | −0.002 | 0.122 | 0.099 | −0.233 | 1 | |
| Cond (µs/cm) | 0.664 | 0.582 | 0.664 | 0.724 | 0.579 | 0.642 | −0.091 | −0.581 | 1 |
| F1 | F2 | F3 | F4 | F5 | F6 | |
|---|---|---|---|---|---|---|
| Cu | 0.984 | −0.104 | −0.075 | 0.019 | −0.023 | 0.119 |
| Zn | 0.936 | 0.279 | 0.165 | 0.127 | −0.032 | 0.007 |
| Pb | 0.969 | 0.087 | 0.155 | −0.147 | −0.003 | −0.089 |
| Cd | 0.988 | −0.092 | 0.004 | −0.101 | −0.056 | 0.043 |
| Ni | 0.947 | 0.113 | 0.244 | 0.158 | 0.038 | −0.053 |
| As | 0.995 | 0.041 | −0.016 | −0.044 | −0.069 | −0.019 |
| T °C | −0.425 | −0.319 | 0.846 | −0.035 | 0.003 | 0.035 |
| pH | 0.016 | 0.985 | 0.112 | −0.069 | 0.105 | 0.044 |
| Cond (µs/cm) | 0.796 | −0.566 | −0.115 | −0.018 | 0.180 | 0.006 |
| Eigenvalues | 6.42 | 1.55 | 0.80 | 0.14 | 0.06 | 6.42 |
| Variability (%) | 71.36 | 17.22 | 8.92 | 1.52 | 0.62 | 0.22 |
| Cumulative (%) | 71.36 | 88.58 | 97.50 | 99.02 | 99.64 | 99.86 |
| Samples | MI | Class | HPI | Class | CI | Class | ERI | Class |
|---|---|---|---|---|---|---|---|---|
| S1 | 1.20 | Slightly affected | 21.88 | Medium water pollution | 0.65 | Low | 6.01 | Low ecological risk |
| S2 | 0.90 | Pure | 16.41 | Medium water pollution | 0.34 | Low | 4.51 | Low ecological risk |
| S3 | 20.92 | Seriously affected | 862.18 | High water pollution | 20.38 | High | 409.44 | Considerable ecological risk |
| S4 | 17.48 | Seriously affected | 700.29 | High water pollution | 16.93 | High | 330.88 | Considerable ecological risk |
| S5 | 20.14 | Seriously affected | 819.81 | High water pollution | 19.59 | High | 387.34 | Considerable ecological risk |
| S6 | 17.20 | Seriously affected | 709.59 | High water pollution | 16.65 | High | 335.31 | Considerable ecological risk |
| S7 | 13.59 | Seriously affected | 558.85 | High water pollution | 13.05 | High | 264.79 | Moderate ecological risk |
| S8 | 10.88 | Seriously affected | 467.05 | High water pollution | 10.33 | High | 222.23 | Moderate ecological risk |
| S9 | 12.34 | Seriously affected | 522.14 | High water pollution | 11.79 | High | 248.71 | Moderate ecological risk |
| S10 | 10.94 | Seriously affected | 454.23 | High water pollution | 10.39 | High | 216.29 | Moderate ecological risk |
| S11 | 9.53 | Seriously affected | 404.63 | High water pollution | 8.99 | High | 192.37 | Moderate ecological risk |
| Samples | MI | Class | HPI | Class | CI | Class | ERI | Class |
|---|---|---|---|---|---|---|---|---|
| S1 | 0.90 | Pure | 16.41 | Medium water pollution | 0.35 | Low | 4.52 | Low ecological risk |
| S2 | 0.70 | Pure | 12.76 | Low water pollution | 0.15 | Low | 3.50 | Low ecological risk |
| S3 | 18.41 | Seriously affected | 774.03 | High water pollution | 17.86 | High | 367.85 | Considerable ecological risk |
| S4 | 15.66 | Seriously affected | 630.46 | High water pollution | 15.11 | High | 297.91 | Moderate ecological risk |
| S5 | 17.79 | Seriously affected | 706.27 | High water pollution | 17.25 | High | 333.10 | Considerable ecological risk |
| S6 | 14.89 | Seriously affected | 625.09 | High water pollution | 14.34 | High | 296.27 | Moderate ecological risk |
| S7 | 11.47 | Seriously affected | 453.59 | High water pollution | 10.92 | High | 213.45 | Moderate ecological risk |
| S8 | 8.60 | Seriously affected | 354.63 | High water pollution | 8.05 | High | 168.36 | Moderate ecological risk |
| S9 | 10.98 | Seriously affected | 462.01 | High water pollution | 10.43 | High | 220.49 | Moderate ecological risk |
| S10 | 8.97 | Seriously affected | 363.17 | High water pollution | 8.42 | High | 172.62 | Moderate ecological risk |
| S11 | 7.59 | Seriously affected | 318.22 | High water pollution | 7.05 | High | 151.50 | Moderate ecological risk |
| Metals | Levels | Conce (mg/L) | Children | Adults | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Oral Ingestion | Dermal Exposure | Oral Ingestion | Dermal Exposure | |||||||
| CDI | HQ | CDI | HQ | CDI | HQ | CDI | HQ | |||
| Pb | Min | 0.009 | 2.88 × 10−7 | 8.22 × 10−5 | 3.22 × 10−10 | 6.14 × 10−7 | 1.23 × 10−8 | 3.52 × 10−6 | 5.01 × 10−11 | 9.53 × 10−8 |
| Mean | 0.033 | 1.05 × 10−6 | 3.01 × 10−4 | 1.18 × 10−9 | 2.25 × 10−6 | 4.52 × 10−8 | 1.29 × 10−5 | 1.84 × 10−10 | 3.50 × 10−7 | |
| Max | 0.054 | 1.73 × 10−6 | 4.93 × 10−4 | 1.93 × 10−9 | 3.68 × 10−6 | 7.40 × 10−8 | 2.11 × 10−5 | 3.00 × 10−10 | 5.72 × 10−7 | |
| Cu | Min | 0.0017 | 5.43 × 10−8 | 1.36 × 10−6 | 6.09 × 10−11 | 1.52 × 10−9 | 2.33 × 10−9 | 5.82 × 10−8 | 9.45 × 10−12 | 2.36 × 10−10 |
| Mean | 0.0280 | 8.95 × 10−7 | 2.24 × 10−5 | 1.00 × 10−9 | 2.51 × 10−8 | 3.84 × 10−8 | 9.59 × 10−7 | 1.56 × 10−10 | 3.89 × 10−9 | |
| Max | 0.0460 | 1.47 × 10−6 | 3.68 × 10−5 | 1.65 × 10−9 | 4.12 × 10−8 | 6.30 × 10−8 | 1.58 × 10−6 | 2.56 × 10−10 | 6.40 × 10−9 | |
| Zn | Min | 0.000 | 7.35 × 10−8 | 2.45 × 10−7 | 8.23 × 10−11 | 2.74 × 10−10 | 3.15 × 10−9 | 1.05 × 10−8 | 1.28 × 10−11 | 4.26 × 10−11 |
| Mean | 0.012 | 3.84 × 10−7 | 1.28 × 10−6 | 4.30 × 10−10 | 1.43 × 10−9 | 1.64 × 10−8 | 5.48 × 10−8 | 6.67 × 10−11 | 2.22 × 10−10 | |
| Max | 0.024 | 7.67 × 10−7 | 2.56 × 10−6 | 8.59 × 10−10 | 2.86 × 10−9 | 3.29 × 10−8 | 1.10 × 10−7 | 1.33 × 10−10 | 4.45 × 10−10 | |
| Ni | Min | 0.0001 | 3.20 × 10−9 | 1.60 × 10−7 | 3.58 × 10−12 | 1.74 × 10−10 | 1.37 × 10−10 | 6.85 × 10−9 | 5.56 × 10−13 | 2.70 × 10−11 |
| Mean | 0.0022 | 7.03 × 10−8 | 3.52 × 10−6 | 7.88 × 10−11 | 3.82 × 10−9 | 3.01 × 10−9 | 1.51 × 10−7 | 1.22 × 10−11 | 5.94 × 10−10 | |
| Max | 0.0044 | 1.41 × 10−7 | 7.03 × 10−6 | 1.58 × 10−10 | 7.65 × 10−9 | 6.03 × 10−9 | 3.01 × 10−7 | 2.45 × 10−11 | 1.19 × 10−9 | |
| Cd | Min | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Mean | 0.019 | 6.07 × 10−7 | 1.21 × 10−3 | 6.80 × 10−10 | 1.36 × 10−6 | 2.60 × 10−8 | 7.44 × 10−6 | 1.06 × 10−10 | 2.11 × 10−7 | |
| Max | 0.034 | 1.09 × 10−6 | 2.17 × 10−3 | 1.22 × 10−9 | 2.43 × 10−6 | 4.66 × 10−8 | 1.33 × 10−5 | 1.89 × 10−10 | 3.78 × 10−7 | |
| As | Min | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Mean | 0.024 | 7.67 × 10−7 | 2.56 × 10−3 | 8.59 × 10−10 | 1.23 × 10−9 | 3.29 × 10−8 | 9.39 × 10−6 | 1.33 × 10−10 | 1.91 × 10−10 | |
| Max | 0.034 | 1.09 × 10−6 | 3.62 × 10−3 | 1.22 × 10−9 | 1.74 × 10−9 | 4.66 × 10−8 | 1.33 × 10−5 | 1.89 × 10−10 | 2.70 × 10−10 | |
| HI for min. values | 8.40 × 10−5 | 6.16 × 10−7 | 3.60 × 10−6 | 9.56 × 10−8 | ||||||
| HI for max. values | 4.10 × 10−3 | 3.64 × 10−6 | 3.09 × 10−5 | 5.66 × 10−7 | ||||||
| HI for mean. Values | 6.34 × 10−3 | 6.17 × 10−6 | 4.97 × 10−5 | 9.59 × 10−7 | ||||||
| Metals | Levels | Conce (mg/L) | Children | Adults | ||||
|---|---|---|---|---|---|---|---|---|
| Oral Ingestion | Dermal Exposure | LCR | Oral Ingestion | Dermal Exposure | LCR | |||
| Pb (mg/L) | Min | 0.0090 | 2.45 × 10−9 | 2.74 × 10−12 | 2.45 × 10−9 | 1.05 × 10−10 | 4.25 × 10−13 | 1.05 × 10−10 |
| Mean | 0.0330 | 8.97 × 10−9 | 1.00 × 10−11 | 8.98 × 10−9 | 3.84 × 10−10 | 1.56 × 10−12 | 3.86 × 10−10 | |
| Max | 0.0540 | 1.47 × 10−8 | 1.64 × 10−11 | 1.47 × 10−8 | 6.29 × 10−10 | 2.55 × 10−12 | 6.31 × 10−10 | |
| As (mg/L) | Min | 0.0000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Mean | 0.0240 | 1.15 × 10−6 | 1.29 × 10−9 | 1.15 × 10−6 | 4.93 × 10−8 | 2.00 × 10−10 | 4.95 × 10−8 | |
| Max | 0.0340 | 1.63 × 10−6 | 1.83 × 10−9 | 1.63 × 10−6 | 6.99 × 10−8 | 2.84 × 10−10 | 7.01 × 10−8 | |
| Cd (mg/L) | Min | 0.0000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Mean | 0.0190 | 2.31 × 10−7 | 2.58 × 10−10 | 2.31 × 10−7 | 9.89 × 10−9 | 4.02 × 10−11 | 9.93 × 10−9 | |
| Max | 0.0340 | 4.13 × 10−7 | 4.63 × 10−10 | 4.13 × 10−7 | 1.77 × 10−8 | 7.19 × 10−11 | 1.78 × 10−8 | |
| Cumulative carcinogenic risk for min. values | 2.45 × 10−9 | 2.74 × 10−12 | 2.45 × 10−9 | 1.05 × 10−10 | 4.25 × 10−13 | 1.05 × 10−10 | ||
| Cumulative carcinogenic risk for mean values | 1.39 × 10−6 | 1.56 × 10−9 | 1.39 × 10−6 | 5.96 × 10−8 | 2.42 × 10−10 | 5.98 × 10−8 | ||
| Cumulative carcinogenic risk for max. values | 2.06 × 10−6 | 2.30 × 10−9 | 2.06 × 10−6 | 8.82 × 10−8 | 3.58 × 10−10 | 8.85 × 10−8 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachid, Z.; Nordine, N.; Hamza, E.F.; Anas, K.; Soufiane, H.; Carreiro, E.P. Spatial Distribution, Health Risks and Heavy Metal Pollution Assessment of Surface Water Under Multiple Anthropogenic Stressors: Case Study in Middle Moulouya Watershed, Morocco. Resources 2025, 14, 183. https://doi.org/10.3390/resources14120183
Rachid Z, Nordine N, Hamza EF, Anas K, Soufiane H, Carreiro EP. Spatial Distribution, Health Risks and Heavy Metal Pollution Assessment of Surface Water Under Multiple Anthropogenic Stressors: Case Study in Middle Moulouya Watershed, Morocco. Resources. 2025; 14(12):183. https://doi.org/10.3390/resources14120183
Chicago/Turabian StyleRachid, Zarzouki, Nouayti Nordine, El Fadili Hamza, Krime Anas, Hasni Soufiane, and Elisabete P. Carreiro. 2025. "Spatial Distribution, Health Risks and Heavy Metal Pollution Assessment of Surface Water Under Multiple Anthropogenic Stressors: Case Study in Middle Moulouya Watershed, Morocco" Resources 14, no. 12: 183. https://doi.org/10.3390/resources14120183
APA StyleRachid, Z., Nordine, N., Hamza, E. F., Anas, K., Soufiane, H., & Carreiro, E. P. (2025). Spatial Distribution, Health Risks and Heavy Metal Pollution Assessment of Surface Water Under Multiple Anthropogenic Stressors: Case Study in Middle Moulouya Watershed, Morocco. Resources, 14(12), 183. https://doi.org/10.3390/resources14120183

