Alternative Use of Biological Resources
1. Introduction
2. Overview of the Published Articles
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuiderveen, E.A.R.; Kuipers, K.J.J.; Caldeira, C.; Hanssen, S.V.; van der Hulst, M.K.; de Jonge, M.M.J.; Vlysidis, A.; van Zelm, R.; Sala, S.; Huijbregts, M.A.J. The potential of emerging bio-based products to reduce environmental impacts. Nat. Commun. 2023, 14, 8521. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Sánchez-García, R.M.; García-Domínguez, I.; Rodríguez-Luna, A.; Hurtado-Fernández, E.; Santos, J. Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production. Appl. Sci. 2025, 15, 6555. [Google Scholar] [CrossRef]
- Tumbure, A.; Pulver, C.; Black, L.; Walsh, L.; Prasad, M.; Leahy, J.J.; Corbett, E.; Gaffney, M.T. Bio-Resource Availability in Ireland: A Practical Review of Potential Replacement Materials for Use in Horticultural Growth Media. Horticulturae 2025, 11, 378. [Google Scholar] [CrossRef]
- Warchold, A.; Pradhan, P. Bioeconomy and sustainable development goals: How do their interactions matter? Geogr. Sustain. 2025, 6, 100293. [Google Scholar] [CrossRef]
- Wang, Y.; Zhen, J.; Wang, B. Analyzing the role of environmental policy innovations and natural resource management in driving circular economy forward: Evidence from BRICS economies. J. Environ. Manag. 2024, 371, 123252. [Google Scholar] [CrossRef]
- Sharma, R.; Solanki, P.; Chaudhary, M.; Gupta, N.; Kaur, P. Unveiling the potential of microalgae for bioplastic production from wastewater–current trends, innovations, and future prospects. Biotechnol. Sustain. Mater. 2024, 1, 10. [Google Scholar] [CrossRef]
- Khan, I.A.; Khalid, H.; Javed, K.; Fraz, A.; Pasha, K.; Khan, A. Dyeing and Functional Finishing of Cotton Fabric Using Ficus carica and Eucalyptus Leaf Extracts with Aloe barbadensis Miller as a Bio-Mordant. Resources 2025, 14, 127. [Google Scholar] [CrossRef]
- Manterola-Barroso, C.; Godoy Sanchez, K.; Scheuermann, E.; Padilla-Contreras, D.; Morina, F.; Meriño-Gergichevich, C. Antioxidant and Physico-Structural Insights of Walnut (Juglans regia) and Hazelnut (Corylus avellana L.) Shells: Implications for Southern Chile By-Product Valorization. Resources 2025, 14, 82. [Google Scholar] [CrossRef]
- Małek, M.; Kluczyński, J.; Grzejda, R.; Wiśniewski, P.; Jenerowicz, A.; Ewiak, I. Thermal and Structural Behavior of Investment Casting Molds Modified with Biodegradable Walnut Shell Chips. Materials 2025, 18, 4289. [Google Scholar] [CrossRef] [PubMed]
- Lejano, B.; Elevado, K.J.; Chua, L.M.; Cuartero, S.R.; Fabian, V.P.; Rase, A.Y. Effects of Green Mussel Shells (Perna viridis) and Chitosan Extracted from Milkfish (Chanos chanos) Scales on the Compressive Strength of Mortar and Concrete. Resources 2025, 14, 9. [Google Scholar] [CrossRef]
- Vignesh, J.; Ramesh, B.; Xavier, J.R. A review of recent trends in sustainable biopolymer-integrated concrete and its impact on mechanical performance and structural reliability. Int. J. Biol. Macromol. 2025, 321, 146408. [Google Scholar] [CrossRef]
- Jose, D.; Siyakumar, R.; Agarwal, M.; Arshad, N.; Gundupalli, M.P.; Thiagamani, S.M.K.; Venkatachalam, P.; Amornraksa, S.; Sriariyanun, M. A comprehensive review of conversion of rice biomass into sustainable products: A green approach toward a circular economy. Sustain. Chem. Clim. Action. 2025, 6, 100069. [Google Scholar] [CrossRef]
- Jaturapiree, A.; Saowapark, T.; Sukrat, K.; Chaichana, E. Hydrothermal Extraction of Cellulose from Sugarcane Bagasse for Production of Biodegradable Food Containers. Recycling 2025, 10, 110. [Google Scholar] [CrossRef]
- Pertiwi, M.D.; Chanifah, C.; Romdon, A.S.; Minarsih, S.; Paminto, A.K.; Komalawati, K.; Isharyadi, F.; Bahua, H.; Arianti, F.D.; Triastono, J.; et al. Sustainability Assessment of Lake Sediment-Based Soil Blocks for Agricultural Seedling Media. Resources 2025, 14, 129. [Google Scholar] [CrossRef]
- Sushma Prasad, D.; Maithani, R.; Berisha, A.; Kaya, S. Colebrookea opposifolia as a Sustainable Green Corrosion Inhibitor for Stainless Steel 410 in 0.5 M HCl: Experimental and Theoretical Aspects. Arab. J. Sci. Eng. 2025, 1–22. [Google Scholar] [CrossRef]
- Shabbir, Z.; Javed, K.; Khan, I.A.; Khan, A.; Saleem, M.J. Sustainable Fruit Preservation Using Algae-Based Bioactive Coatings on Textile Packaging. Resources 2025, 14, 15. [Google Scholar] [CrossRef]
- Henao, D.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach. Resources 2024, 13, 139. [Google Scholar] [CrossRef]
- Rahaman, A.; Ahsan, S.; Kumari, A.; Khaliq, A.; Mehmood, T.; Chughtai, M.F.J.; Farooq, M.A.; Khalifa, I.; Wali, M.; Zeng, X. Application of Plant-Based Proteins in the Development of Fish and Meat Analogues Products. J. Texture Stud. 2025, 56, e70025. [Google Scholar] [CrossRef]
- Jiang, X.; He, Y.; Li, X.; Huang, Y.; Liu, Y.; Wang, F. Triple gel enhancement, antioxidant and cryoprotective effects of the enzyme-assisted extracted surimi by-product proteins on unwashed silver carp surimi. Int. J. Biol. Macromol. 2025, 309, 143167. [Google Scholar] [CrossRef]
- Panpipat, W.; Chumin, T.; Thongkam, P.; Pinthong, P.; Shetty, K.; Chaijan, M. Relatively Low Lecithin Inclusion Improved Gelling Characteristics and Oxidative Stability of Single-Washed Mackerel (Auxis thazard) Surimi. Foods 2024, 13, 546. [Google Scholar] [CrossRef]
- Reddy, N.B.P.; Indumathi, C.; Deotale, S.; Nath, P.C.; Rao Ashoksuraj, B.S.; Rajam, R.; Thivya, P. Recent developments and innovative application of propolis in the food industry: A natural preservative from honeybee waste. Food Sci. Biotechnol. 2025, 34, 3153–3173. [Google Scholar] [CrossRef]
- Rana, A.; Malik, A.; Sobti, R.C. Anti-bacterial Properties of Propolis: A Comprehensive Review. Curr. Microbiol. 2025, 82, 479. [Google Scholar] [CrossRef]
- Fragassa, C.; Vannucchi de Camargo, F.; Santulli, C. Sustainable Biocomposites: Harnessing the Potential of Waste Seed-Based Fillers in Eco-Friendly Materials. Sustainability 2024, 16, 1526. [Google Scholar] [CrossRef]
- Lal, R.; Jayani De Silva, M. Economic impact and policy implications of emerging materials in green building certification in U.S. buildings: A comprehensive review. Energy Build. 2025, 347, 116238. [Google Scholar] [CrossRef]
- Ansar, A.; Du, J.; Javed, Q.; Adnan, M.; Javaid, I. Biodegradable Waste in Compost Production: A Review of Its Economic Potential. Nitrogen 2025, 6, 24. [Google Scholar] [CrossRef]
- Karmakar, R.; Aggarwal, S.; Kathuria, D.; Singh, N.; Tripathi, V.; Sharma, P.K.; Mitra, D.; Kumar, S.; Bhattacharya, S. Valorization of food waste stream by harnessing bioactive compounds: A comprehensive review on the process, challenges and solutions. Food Biosci. 2025, 69, 106833. [Google Scholar] [CrossRef]
- Sharma, A.; Jyoti, A.; More, A.; Gunjal, M.; Rasane, P.; Kumar, M.; Kaur, S.; Ercisli, S.; Gurumayum, S.; Singh, J. Harnessing Fruit and Vegetable Waste for Biofuel Production: Advances and Scope for Future Development. eFood 2025, 6, e70051. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Aziz, A.A.; Nowfal, S.H.; Braim, F.S.; Abdullah, W.; Kasasbeh, W.H.; Jameel, M.S.; Alanezi, S.T.; Alrosan, M.; Oladzadabbasabadi, N. Sustainable green synthesis of silver nanoparticles for safer biomedical application. J. Environ. Chem. Eng. 2025, 13, 115998. [Google Scholar] [CrossRef]
- Laib, I.; Gheraissa, N.; Benaissa, A.; Benkhira, L.; Azzi, M.; Benaissa, Y.; Abdelaziz, A.G.; Tian, F.; Walsh, M.; Bechelany, M.; et al. Tailoring innovative silver nanoparticles for modern medicine: The importance of size and shape control and functional modifications. Mater. Today Bio 2025, 33, 102071. [Google Scholar] [CrossRef]
- Khan, H.; Piccolella, S.; Pacifico, S. Harnessing plant extracts for green nanoparticle synthesis: Toward a sustainable future. Mater. Today Sustain. 2025, 31, 101195. [Google Scholar] [CrossRef]
- Hewage, S.P.W.R.; Fernando, H. Green Synthesis and Characterization of Fe-Ti Mixed Nanoparticles for Enhanced Lead Removal from Aqueous Solutions. Molecules 2025, 30, 1902. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boros, A.; Lakner, Z. Alternative Use of Biological Resources. Resources 2025, 14, 171. https://doi.org/10.3390/resources14110171
Boros A, Lakner Z. Alternative Use of Biological Resources. Resources. 2025; 14(11):171. https://doi.org/10.3390/resources14110171
Chicago/Turabian StyleBoros, Anita, and Zoltán Lakner. 2025. "Alternative Use of Biological Resources" Resources 14, no. 11: 171. https://doi.org/10.3390/resources14110171
APA StyleBoros, A., & Lakner, Z. (2025). Alternative Use of Biological Resources. Resources, 14(11), 171. https://doi.org/10.3390/resources14110171
