Resource Availability and Use in Restored, Unmanaged, and Aquaculture Mangrove Ecosystems in Indonesia
Abstract
:1. Introduction
- -
- Mangroves’ above- and belowground biomass: A lack of biodiversity is typically linked with a loss of biomass [40]. Likewise, tree characteristics such as age and density have been found to directly correlate with biomass [41]. Evaluating the level of biomass that a forest contains is vital to ensure that the correct forestry management practices are implemented [42].
- -
- Mangrove density: The density of the mangroves affects their ability to protect the coast from storm or wave damage [11]. Although mangroves attenuate waves’ action [12], the more dispersed they are, the less of an impact they have. Density can also potentially impact wildlife relying on the mudflats, e.g., crabs.
- -
- Soil quality: Soil composition can provide an indication of mangrove ecosystems’ health [36]. Mangroves regulate carbon found within coastal soils through CO2 sequestration and biomass accumulation [43,44]. They can also nullify pollutants and denitrify waterways that are secured within the soils [45]. The presence of aluminium, however, can hinder propagule growth and is often associated with aquaculture [46].
- -
- Crab assemblages: Crabs are intertwined with the growth and development of mangroves [37]. Ferreira et al. [47] suggested that monitoring the abundance of crabs could be used to measure the success of mangrove restoration. Crabs facilitate litter decomposition through leaf processing, burying of leaves and mixing of soil and decomposing bacteria through excavations [15,48,49,50]. Concurrently, they may also influence the community density and structure through direct consumption of the propagules. Furthermore, crabs are also a main food source for local communities.
- -
- Fishing pressure: Pressure from fishing activities can directly impact mangrove health. Local communities rely on resources from mangroves, but they can be overexploited through intense use.
2. Materials and Methods
2.1. Site Selection and Descriptions
Site | Locality | Designation | Use |
---|---|---|---|
Site 1 | Budeng (Bali Barat) | Unmanaged | Current aquaculture site that has been unmanaged for more than 10 years, with local communities extracting resources (shrimp and fish). |
Site 2 | Budeng (Bali Barat) | Managed | Current aquaculture site that has been managed and restored over the last 20 years and is still used as an aquaculture farm for mangrove mud crabs, shrimp, and oysters. |
Site 3 | Batu Putih (Lombok Barat) | Managed | Under restoration since 2021 by the NGO Sustainable Oceanic Research, Conservation, and Education initiative (SORCE). This site of around 10 ha has been subjected to deforestation of the mangrove habitat to create a road through the landward area of the mangrove forest [54]. |
Site 4 | Batu Putih (Lombok Barat) | Unmanaged | Site selected for future restoration by SORCE but that was unmanaged at the time of the surveys [54]. This site of around 13 ha has seen more natural recruitment in these areas than Site 3, with many young Ceriops species in the areas that could be classed as mudflats. |
Site 5 | Tahura Ngurah Rai (Kuta, Bali) | Managed | A tourist attraction with wooden walkways built within the mangrove forest; however, this has been closed off to the public for several years and needs permission to be entered. There is evidence that restoration was conducted recently and is ongoing. |
Site 6 | Tahura Ngurah Rai (Kuta, Bali) | Unmanaged | Used by local fishermen to moor boats and fish along the mudflats. This site is unmanaged and has been historically deforested for economic development. Sites 5 and 6 are part of the same mangrove ecosystem of around 1100 ha [55]. |
2.2. Survey Design
2.3. Mangrove Vegetation
2.4. Soil
2.5. Crabs
2.6. Fishing Pressure
2.7. Data Analysis
3. Results
3.1. Mangrove Vegetation
3.2. Soil
3.3. Crabs
3.4. Correlations between Variables
3.5. Fishing Pressure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Response Variable | Predictor | Estimate | Std. Error | Z Value | p Value |
---|---|---|---|---|---|
Crab abundance | Intercept | 3.09 | 0.35 | 8.93 ** | <0.001 |
No aquaculture vs. aquaculture | −1.30 | 0.49 | −2.59 ** | 0.010 | |
Managed vs. unmanaged | −0.72 | 0.53 | −1.36 | 0.174 | |
Interaction effect | 0.85 | 0.73 | 1.16 | 0.246 | |
Crab richness | Intercept | 1.51 | 0.29 | 5.27 ** | <0.001 |
No aquaculture vs. aquaculture | −1.21 | 0.45 | −2.69 ** | 0.007 | |
Managed vs. unmanaged | −0.70 | 0.48 | −1.46 | 0.146 | |
Interaction effect | 0.80 | 0.68 | 1.18 | 0.239 | |
Crab diversity | Intercept | −0.58 | 0.56 | −1.04 | 0.297 |
No aquaculture vs. aquaculture | −1.13 | 0.83 | −1.37 | 0.171 | |
Managed vs. unmanaged | −0.36 | 0.85 | −0.43 | 0.668 | |
Interaction effect | −0.01 | 1.26 | −0.01 | 0.994 | |
Mangrove abundance | Intercept | 4.16 | 2.02 | 2.06 * | 0.039 |
No aquaculture vs. aquaculture | −1.13 | 2.02 | −0.56 | 0.575 | |
Managed vs. unmanaged | −0.10 | 0.62 | −0.16 | 0.874 | |
Interaction effect | −0.26 | 0.80 | −0.33 | 0.744 | |
Mangrove AGB | Intercept | 5.91 | 0.39 | 15.15 ** | <0.001 |
No aquaculture vs. aquaculture | 0.71 | 0.47 | 1.53 | 0.126 | |
Managed vs. unmanaged | 0.45 | 0.54 | 0.83 | 0.409 | |
Interaction effect | −0.67 | 0.65 | −1.02 | 0.306 | |
Mangrove BGB | Intercept | 5.64 | 0.36 | 15.48 ** | <0.001 |
No aquaculture vs. aquaculture | 0.04 | 0.45 | 0.10 | 0.925 | |
Managed vs. unmanaged | 0.17 | 0.51 | 0.33 | 0.742 | |
Interaction effect | −0.02 | 0.62 | −0.03 | 0.979 | |
Mangrove richness | Intercept | 1.18 | 1.22 | 0.94 | 0.335 |
No aquaculture vs. aquaculture | −0.79 | 1.23 | −0.64 | 0.522 | |
Managed vs. unmanaged | −0.23 | 0.33 | −0.68 | 0.500 | |
Interaction effect | 0.09 | 0.41 | 0.23 | 0.822 | |
Subsoil Al | Intercept | 6.95 | 0.37 | 19.01 ** | <0.001 |
No aquaculture vs. aquaculture | −0.31 | 0.57 | −0.54 | 0.589 | |
Managed vs. unmanaged | 0.49 | 0.47 | 1.04 | 0.297 | |
Interaction effect | 0.21 | 0.60 | 0.34 | 0.731 | |
Subsoil C | Intercept | 2.20 | 0.49 | 4.48 ** | <0.001 |
No aquaculture vs. aquaculture | 0.95 | 0.60 | 1.57 | 0.116 | |
Managed vs. unmanaged | 0.59 | 0.70 | 0.84 | 0.400 | |
Interaction effect | −0.64 | 0.85 | −0.76 | 0.450 | |
Subsoil N | Intercept | −2.26 | 0.17 | −13.53 ** | <0.001 |
No aquaculture vs. aquaculture | −0.85 | 0.23 | −3.64 ** | <0.001 | |
Managed vs. unmanaged | 0.08 | 0.23 | 0.37 | 0.715 | |
Interaction effect | −0.04 | 0.32 | −0.12 | 0.902 | |
Topsoil Al | Intercept | 7.30 | 0.42 | 17.48 ** | <0.001 |
No aquaculture vs. aquaculture | −1.17 | 0.60 | −1.93 t | 0.054 | |
Managed vs. unmanaged | 0.24 | 0.57 | 0.42 | 0.672 | |
Interaction effect | 0.84 | 0.78 | 1.08 | 0.280 | |
Topsoil C | Intercept | 2.07 | 0.48 | 4.35 ** | <0.001 |
No aquaculture vs. aquaculture | 1.01 | 0.58 | 1.73 t | 0.084 | |
Managed vs. unmanaged | 0.38 | 0.67 | 0.56 | 0.573 | |
Interaction effect | −0.58 | 0.82 | −0.71 | 0.480 | |
Topsoil N | Intercept | −2.07 | 0.17 | −11.97 ** | <0.001 |
No aquaculture vs. aquaculture | −0.93 | 0.24 | −3.82 ** | <0.001 | |
Managed vs. unmanaged | −0.47 | 0.27 | −1.75 t | 0.080 | |
Interaction effect | 0.61 | 0.36 | 1.72 t | 0.086 |
Variable | AquUnm/ NoAUnm | AquUnm/ AquMan | AquUnm/ NoAMan | NoAUnm/ AquMan | NoAUnm/ NoAMan | AquMan/ NoAMan |
---|---|---|---|---|---|---|
Crab abundance | 3.60 ± 1.78 Z = 2.6 *, p = 0.047 | 2.05 ± 1.08 Z = 1.4, p = 0.524 | 3.14 ± 1.53 Z = 2.4 t, p = 0.087 | 0.57 ± 0.31 Z = −1.0, p = 0.737 | 0.87 ± 0.45 Z = −0.3, p = 0.994 | 1.53 ± 0.84 Z = 0.8, p = 0.862 |
Crab richness | 3.35 ± 1.50 Z = 2.7 *, p = 0.035 | 2.01 ± 0.96 Z = 1.5, p = 0.465 | 3.01 ± 1.33 Z = 2.5 t, p = 0.059 | 0.60 ± 0.31 Z = −1.0, p = 0.758 | 0.90 ± 0.44 Z = −0.2, p = 0.996 | 1.50 ± 0.77 Z = 0.8, p = 0.859 |
Crab diversity | 3.10 ± 2.56 Z = 1.4, p = 0.520 | 1.44 ± 1.23 Z = 0.4, p = 0.974 | 4.50 ± 4.05 Z = 1.7, p = 0.337 | 0.47 ± 0.41 Z = −0.9, p = 0.823 | 1.45 ± 1.35 Z = 0.4, p = 0.978 | 3.13 ± 2.98 Z = 1.2, p = 0.630 |
Mangrove abundance | 3.11 ± 6.27 Z = 0.6, p = 0.944 | 1.10 ± 0.69 Z = 0.2, p = 0.999 | 4.45 ± 9.23 Z = 0.7, p = 0.889 | 0.36 ± 0.58 Z = −0.6, p = 0.920 | 1.43 ± 0.71 Z = 0.7, p = 0.888 | 4.03 ± 6.80 Z = 0.8, p = 0.842 |
Mangrove AGB | 0.49 ± 0.23 Z = −1.5, p = 0.420 | 0.64 ± 0.35 Z = −0.8, p = 0.842 | 0.61 ± 0.29 Z = −1.0, p = 0.722 | 1.31 ± 0.59 Z = 0.6, p = 0.935 | 1.25 ± 0.46 Z = 0.6, p = 0.931 | 0.96 ± 0.44 Z = −0.1, p = 0.999 |
Mangrove BGB | 0.96 ± 0.43 Z = −0.1, p = 0.999 | 0.85 ± 0.43 Z = −0.3, p = 0.988 | 0.82 ± 0.37 Z = −0.4, p = 0.972 | 0.88 ± 0.39 Z = −0.3, p = 0.992 | 0.85 ± 0.31 Z = −0.4, p = 0.975 | 0.98 ± 0.43 Z = −0.1, p = 1.000 |
Mangrove richness | 2.20 ± 2.71 Z = 0.6, p = 0.919 | 1.25 ± 0.42 Z = 0.7, p = 0.907 | 2.51 ± 3.15 Z = 0.7, p = 0.884 | 0.57 ± 0.56 Z = −0.6, p = 0.941 | 1.14 ± 0.28 Z = 0.5, p = 0.949 | 2.00 ± 2.03 Z = 0.7, p = 0.902 |
Subsoil Al | 1.36 ± 0.77 Z = 0.5, p = 0.995 | 0.61 ± 0.29 Z = −1.0, p = 0.880 | 0.68 ± 0.34 Z = −0.8, p = 0.968 | 0.45 ± 0.25 Z = −1.4, p = 0.634 | 0.50 ± 0.19 Z = −1.9, p = 0.326 | 1.11 ± 0.54 Z = 0.2, p = 1.000 |
Subsoil C | 0.71 ± 0.16 Z = −1.6, p = 0.454 | 0.80 ± 0.24 Z = −0.8, p = 0.741 | 0.73 ± 0.16 Z = −1.5, 0.454 | 1.13 ± 0.23 Z = 0.6, p = 0.742 | 1.02 ± 0.22 Z = 0.1, p = 0.907 | 0.90 ± 0.24 Z = −0.5, p = 0.742 |
Subsoil N | 2.33 ± 0.54 Z = 3.6 **, p = 0.002 | 0.92 ± 0.21 Z = −0.4, p = 0.983 | 2.23 ± 0.51 Z = 3.47 **, p = 0.003 | 0.40 ± 0.09 Z = −4.1 **, p < 0.001 | 0.96 ± 0.22 Z = −0.2, p = 0.997 | 2.42 ± 0.55 Z = 3.9 **, p < 0.001 |
Topsoil Al | 3.21 ± 1.94 Z = 1.9, p = 0.281 | 0.79 ± 0.45 Z = −0.4, p = 0.999 | 1.09 ± 0.56 Z = 0.2, p = 1.000 | 0.25 ± 0.14 Z = −2.4 t, p = 0.090 | 0.34 ± 0.18 Z = −2.0, p = 0.226 | 1.34 ± 0.68 Z = 0.66, p = 0.986 |
Topsoil C | 0.67 ± 0.19 Z = −1.7, p = 0.535 | 0.85 ± 0.20 Z = −0.6, p = 0.673 | 0.72 ± 0.18 Z = −1.4, p = 0.535 | 1.26 ± 0.21 Z = 1.1, p = 0.580 | 1.07 ± 0.14 Z = 0.4, p = 0.673 | 0.85 ± 0.20 Z = −0.7, p = 0.673 |
Topsoil N | 2.54 ± 0.62 Z = 3.8 **, p < 0.001 | 1.60 ± 0.43 Z = 1.7, p = 0.122 | 2.20 ± 0.52 Z = 3.32 **, p = 0.003 | 0.63 ± 0.17 Z = −1.7, p = 0.122 | 0.87 ± 0.20 Z = −0.6, p = 0.538 | 1.38 ± 0.36 Z = 1.2, p = 0.264 |
References
- Biswas, P.L.; Biswas, S.R. Mangrove Forests: Ecology, Management, and Threats. In Life on Land, Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–14. [Google Scholar]
- Kathiresan, K.; Bingham, B.L. Biology of Mangroves and Mangrove Ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Krauss, K.W.; Ball, M.C. On the halophytic nature of mangroves. Trees-Struct. Funct. 2013, 27, 7–11. [Google Scholar] [CrossRef]
- Naidoo, T.; Rajkaran, A. Sershen Impacts of plastic debris on biota and implications for human health: A South African perspective. S. Afr. J. Sci. 2020, 116, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Suratman, M.N. Carbon Sequestration Potential of Mangroves in Southeast Asia. In Managing Forest Ecosystems: The Challenge of Climate Change; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Kauffman, J.C.H.; Thomas, G.C.; Kathleen, A.D.; Daniel, C.; Donato, D. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 2011, 31, 343–352. [Google Scholar] [CrossRef]
- Ferraz, A.; Saatchi, S.S.; Xu, L.; Hagen, S.C.; Chave, J.; Yu, Y.; Meyer, V.; Garcia, M.; Silva, C.A.; Roswintiart, O.; et al. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environ. Res. Lett. 2018, 13, 095001. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Chatting, M.; Al-Maslamani, I.; Walton, M.; Skov, M.W.; Kennedy, H.; Husrevoglu, Y.S.; Vay, L.L. Future mangrove carbon storage under climate change and deforestation. Front. Mar. Sci. 2022, 9, 781876. [Google Scholar] [CrossRef]
- Sánchez-Núñez, D.A.; Bernal, G.; Pineda, J.E.M. The relative role of mangroves on wave erosion mitigation and sediment properties. Estuaries Coasts 2019, 42, 2124–2138. [Google Scholar] [CrossRef]
- Kamil, E.A.; Takaijudin, H.; Hashim, A.M. Mangroves As Coastal Bio-Shield: A Review of Mangroves Performance in Wave Attenuation. Civ. Eng. J. 2021, 7, 1964–1981. [Google Scholar] [CrossRef]
- Lee, W.K.; Tay, S.H.X.; Ooi, S.K.; Friess, D.A. Potential short wave attenuation function of disturbed mangroves. Estuar. Coast. Shelf Sci. 2021, 248, 106747. [Google Scholar] [CrossRef]
- Giesen, W.; Wulffraat, S.; Zieren, M.; Scholten, L. Mangrove Guidebook for Southeast Asia; UN Food and Agricultural Organization: Phnom Penh, Cambodia, 2007. [Google Scholar]
- Faridah-Hanum, I.; Kudus, K.A.; Saari, N.S. Plant Diversity and Biomass of Marudu Bay Mangroves in Malaysia. Pakistan J. Bot. 2012, 44, 151–156. [Google Scholar]
- Twilley, R.R.; Snedaker, S.C.; Yaez-Arancibia, A.; Medina, E. Biodiversity and ecosystem processes in tropical estuaries: Perspectives of mangrove ecosystems. In Scope-Scientific Committee on Problems of the Environment International Council of Scientific Unions; John and Wiley and Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Mumby, P.J.; Edwards, A.J.; Rias-Gonzalez, J.E.; Lindeman, K.C.; Blackwell, P.G.; Gall, A.; Gorczynska, M.I.; Harborne, A.R.; Pescod, C.L.; Renken, H.; et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 2004, 427, 533–536. [Google Scholar] [CrossRef]
- Satyanarayana, B.; Quispe-Zuniga, M.R.; Hugé, J.; Sulong, I.; Mohd-Lokman, H.; Dahdouh-Guebas, F. Mangroves Fueling Livelihoods: A Socio-Economic Stakeholder Analysis of the Charcoal and Pole Production Systems in the World’s Longest Managed Mangrove Forest. Front. Ecol. Evol. 2021, 9, 621721. [Google Scholar] [CrossRef]
- Aziz, A.A.; Dargusch, P.; Phinn, S.; Ward, A. Using REDD+ to balance timber production with conservation objectives in a mangrove forest in Malaysia. Ecol. Econ. 2015, 120, 108–116. [Google Scholar] [CrossRef]
- Hutchison, J.; Spalding, M.; zu Ermgassen, P. The Role of Mangroves in Fisheries Enhancement; The Nature Conservancy: Arlington County, VA, USA; Wetlands International: Wageningen, The Netherlands, 2014; pp. 1–54. [Google Scholar]
- Alongi, D.M. Present State and Future of the World’s Mangrove Forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Alongi, D.M. Climate Change and Mangroves. In Mangroves: Biodiversity, Livelihoods and Conservation; Springer Nature: Singapore, 2022; pp. 175–198. [Google Scholar]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef]
- Luther, D.A.; Greenberg, R. Mangroves: A Global Perspective on the Evolution and Conservation of Their Terrestrial Vertebrates. BioScience 2009, 59, 602–612. [Google Scholar] [CrossRef]
- Adame, M.F.; Connolly, R.M.; Turschwell, M.P.; Lovelock, C.E.; Fatoyinbo, T.; Lagomasino, D.; Goldberg, L.A.; Holdorf, J.; Friess, D.A.; Sasmito, S.D.; et al. Future carbon emissions from global mangrove forest loss. Glob. Chang. Biol. 2021, 27, 2856–2866. [Google Scholar] [CrossRef]
- Arifanti, V.B.; Sidik, F.; Mulyanto, B.; Susilowati, A.; Wahyuni, T.; Subarno; Yulianti; Yuniarti, N.; Aminah, A.; Suita, E.; et al. Challenges and Strategies for Sustainable Mangrove Management in Indonesia: A Review. Forests 2022, 13, 695. [Google Scholar] [CrossRef]
- Luom, T.T.; Phong, N.T.; Smithers, S.; Van Tai, T. Protected mangrove forests and aquaculture development for livelihoods. Ocean Coast. Manag. 2021, 205, 105553. [Google Scholar] [CrossRef]
- Miteva, D.A.; Murray, B.C.; Pattanayak, S.K. Do protected areas reduce blue carbon emissions? A quasi-experimental evaluation of mangroves in Indonesia. Ecol. Econ. 2015, 119, 127–135. [Google Scholar] [CrossRef]
- Tengku Hashim, T.M.Z.; Engku Ariff, E.A.R.; Suratman, M.N. Aquaculture in Mangroves. In Mangroves: Ecology, Biodiversity and Management; Springer: Singapore, 2021; pp. 419–438. [Google Scholar]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef]
- McSherry, M.; Davis, R.P.; Andradi-Brown, D.A.; Ahmadia, G.N.; Van Kempen, M.; Brian, S.W. Integrated mangrove aquaculture: The sustainable choice for mangroves and aquaculture? Front. For. Glob. Chang. 2023, 6, 1094306. [Google Scholar] [CrossRef]
- Balmford, A.; Bruner, A.; Cooper, P.; Costanza, R.; Farber, S.; Green, R.E.; Jenkins, M.; Jefferiss, P.; Jessamy, V.; Madden, J.; et al. Economic Reasons for Conserving Wild Nature. Science 2002, 297, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Aheto, D.W.; Kankam, S.; Okyere, I.; Mensah, E.; Osman, A.; Jonah, F.E.; Mensah, J.C. Community-Based Mangrove Forest Management: Implications for Local Livelihoods and Coastal Resource Conservation along the Volta Estuary Catchment Area of Ghana. Ocean. Coast Manag. 2016, 127, 43–54. [Google Scholar] [CrossRef]
- Mesta, P.; Setturu, B.; Chandran, M.D.S.; Ramachandra, T.V. Inventorying, Mapping and Monitoring of Mangroves towards Sustainable Management of West Coast, India. Geophys. Remote Sens. 2014, 3, 3–9. [Google Scholar]
- Field, C.D. Rehabilitation of mangrove ecosystems, a review. Mar. Pollut. Bull. 1998, 37, 383–392. [Google Scholar] [CrossRef]
- Ibrahim, F.H.; Yusoff, F.M.; Fitrianto, A.; Nuruddin, A.A.; Gandaseca, S.; Samdin, Z.; Kamarudin, N.; Nurhidayu, S.; Kassim, M.R.; Hakeem, K.R.; et al. How to develop a comprehensive Mangrove Quality Index? MethodsX 2019, 6, 1591–1599. [Google Scholar] [CrossRef]
- Faridah-Hanum, I.; Yusoff, F.M.; Fitrianto, A.; Ainuddin, N.A.; Gandaseca, S.; Zaiton, S.; Norizah, K.; Nurhidayu, S.; Roslan, M.K.; Hakeem, K.R.; et al. Development of a comprehensive mangrove quality index (MQI) in Matang Mangrove; Assessing mangrove ecosystem health. Ecol. Indic. 2019, 102, 103–117. [Google Scholar] [CrossRef]
- Biswas, S.R.; Mallik, A.U.; Choudhury, J.K.; Nishat, A. A unified framework for the restored of Southeast Asian mangroves—Bridging ecology, society and economics. Wetl. Ecol. Manag. 2009, 17, 365–383. [Google Scholar] [CrossRef]
- Rahman; Lokollo, F.F.; Manuputty, G.D.; Hukubun, R.D.; Krisye; Maryono; Wawo, M.; Wardiatno, Y. A review on the biodiversity and conservation of mangrove ecosystems in Indonesia. Biodivers Conserv. 2024, 33, 875–903. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nat. Cell Biol. 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Zaman, M.R.; Rahman, M.S.; Ahmed, S.; Zuidema, P.A. What drives carbon stocks in a mangrove forest? The role of stand structure, species diversity and functional traits. Estuar. Coast. Shelf Sci. 2023, 295, 108556. [Google Scholar]
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; Crowther, T.W.; et al. The importance of consistent global forest aboveground biomass product validation. Surv. Geophys. 2019, 40, 979–999. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef]
- Inoue, T. Carbon sequestration in Mangroves. In Blue Carbon in Shallow Coastal Ecosystems. Carbon Dynamics, Policy, and Implementation; Springer: Singapore, 2019; pp. 73–99. [Google Scholar]
- Valiela, I.; Cole, M.L. Comparative evidence that saltmarshes and mangroves may protect sea grass meadow from land-derived nitrogen loads. Ecosystems 2002, 5, 92–102. [Google Scholar] [CrossRef]
- Ma, L.; Yang, S. Growth and physiological response of Kandelia obovata and Bruguiera sexangula seedlings to aluminum stress. Environ. Sci. Pollut. Res. 2022, 29, 43251–43266. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Ganade, G.; de Attayde, J.L. Restoration versus natural regeneration in a neotropical mangrove: Effects on plant biomass and crab communities. Ocean Coast. Manag. 2015, 110, 38–45. [Google Scholar] [CrossRef]
- Aschenbroich, A.; Michaud, E.; Stieglitz, T.; Fromard, F.; Gardel, A.; Tavares, M.; Thouzeau, G. Brachyuran crab community structure and associated sediment reworking activities in pioneer and young mangroves of French Guiana, South America. Estuar. Coast. Shelf Sci. 2016, 182, 60–71. [Google Scholar] [CrossRef]
- Kristensen, E.; Penha-Lopes, G.; Delefosse, M.; Valdemarsen, T.; Quintana, C.O.; Banta, G.T. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 2012, 446, 285–302. [Google Scholar] [CrossRef]
- Agusto, L.E.; Sara, F.; Jimenez, P.J.; Quadros, A.; Cannicci, S. Structural characteristics of crab burrows in Hong Kong mangrove forests and their role in ecosystem engineering. Estuar. Coast. Shelf Sci. 2020, 248, 106973. [Google Scholar] [CrossRef]
- Sidharta, B.R. Peta mangrove nasional 2021. Kedaulatan Rakyat, 21 October 2021. [Google Scholar] [CrossRef]
- Proisy, C.; Viennois, G.; Sidik, F.; Andayani, A.; Enright, J.A.; Guitet, S.; Gusmawati, N.; Lemonnier, H.; Muthusankar, G.; Olagoke, A.; et al. Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: A case study from the Perancak estuary, Bali, Indonesia. Mar. Pollut. Bull. 2018, 131, 61–71. [Google Scholar] [CrossRef]
- Seary, R.; Spencer, T.; Bithell, M.; McOwen, C.; Ota, Y. Defining mangrove-fisheries: A typology from the Perancak Estuary, Bali, Indonesia. PLoS ONE 2021, 16, e0249173. [Google Scholar] [CrossRef] [PubMed]
- Rigby, I.; Siangian, R.A.S. SORCE bi-monthly report for TreeApp. Unpublished report. 2023. [Google Scholar]
- Nurhaliza, A.P.; Damayanti, A.; Dimyati, M. Monitoring area and health changes of mangrove forest using multitemporal landsat imagery in Taman Hutan Raya Ngurah Rai, Bali Province. IOP Conf. Ser. Earth Environ. Sci. 2021, 673, 012050. [Google Scholar] [CrossRef]
- Free Indonesia GIS Map Files. Available online: https://simplemaps.com/gis/country/id (accessed on 15 May 2024).
- Tobias, A.; Umali, A.G.A.; Malabrigo, P.; Galang, M.A. Mangrove Forest Inventory and Estimation of Carbon Storage and Sedimentation in Pagbilao. Wealth Account. Valuat. Ecosyst. Serv. 2017, 1–95. Available online: https://www.wavespartnership.org/ (accessed on 30 May 2024).
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sarker, S.K.; Friess, D.A.; Kamruzzaman, M.; Jacobs, M.; Sillanpää, M.; Naabeh, C.S.S.; Pretzsch, H. Mangrove tree growth is size-dependent across a large-scale salinity gradient. For. Ecol. Manag. 2023, 537, 120954. [Google Scholar] [CrossRef]
- Dharmawan, I.W.S.; Siregar, C.A. Karbon tanah dan pendugaan karbon tegakan. J. Penelit. Hutan Dan Konserv. Alam 2008, 5, 317–328. [Google Scholar] [CrossRef]
- Vinh, T.V.; Marchand, C.; Linh, T.V.K.; Vinh, D.D.; Allenbach, M. Allometric models to estimate above-ground biomass and carbon stocks in Rhizophora apiculata tropical managed mangrove forests (Southern Viet Nam). For. Ecol. Manag. 2019, 434, 131–141. [Google Scholar] [CrossRef]
- Clough, B.F.; Scott, K. Allometric relationships for estimating above-ground biomass in six mangrove species. For. Ecol. Manag. 1989, 27, 117–127. [Google Scholar] [CrossRef]
- Fromard, F.; Puig, H.; Mougin, E.; Marty, G.; Betoulle, J.L.; Cadamuro, L. Structure, above-ground biomass and dynamics of mangrove ecosystems: New data from French Guiana. Oecologia 1998, 115, 39–53. [Google Scholar] [CrossRef]
- Hanh, N.T.H.; Tinh, P.H.; Tuan, M.S. Allometry and biomass accounting for mangroves Kandelia obovata Sheue, Liu & Yong and Sonneratia caseolaris (L.) Engler planted in coastal zone of Red River Delta, Vietnam. Int. J. Dev. Res. 2016, 6, 7804–7808. [Google Scholar]
- Komiyama, A.; Poungparn, S.; Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 2005, 21, 471–477. [Google Scholar] [CrossRef]
- Komiyama, A.; Ong, J.E.; Poungparn, S. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 2008, 89, 128–137. [Google Scholar] [CrossRef]
- Gevana, D.; Im, S. Allometric models for Rhizophora stylosa Griff. in dense monoculture plantation in the Philippines. Malays. For. 2016, 79, 39–53. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Methods of Soil Analysis, Part 3–Chemical Methods; Soil Science Society of America Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Stiepani, J.; Gillis, L.G.; Chee, S.Y.; Pfeiffer, M.; Nordhaus, I. Impacts of urbanization on mangrove forests and brachyuran crabs in Penang, Malaysia. Reg. Environ. Chang. 2021, 21, 69. [Google Scholar] [CrossRef]
- Reis-Filho, J.A.; Harvey, E.S.; Giarrizzo, T. Impacts of small-scale fisheries on mangrove fish assemblages. ICES J. Mar. Sci. 2018, 76, 153–164. [Google Scholar] [CrossRef]
- Tahiluddin, A.; Sarri, J. An Overview of Destructive Fishing in the Philippines. Acta. Nat. Sci. 2022, 3, 116–125. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modelling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models; R Package Version 020; University of Regensburg: Regensburg, Germany, 2018. [Google Scholar]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package ‘corrplot’. Statistician 2017, 56, e24. [Google Scholar]
- van Bijsterveldt, C.E.J.; Debrot, A.O.; Bouma, T.J.; Maulana, M.B.; Pribadi, R.; Schop, J.; Tonneijck, F.H.; van Wesenbeeck, B.K. To Plant or Not to Plant: When can Planting Facilitate Mangrove Restoration? Front. Environ. Sci. 2022, 9, 690011. [Google Scholar] [CrossRef]
- Tamin, N.M.; Zakaria, R.; Hashim, R.; Yin, Y. Establishment of Avicennia marina mangroves on accreting coastline at Sungai Haji Dorani, Selangor, Malaysia. Estuar. Coast Shelf Sci. 2011, 94, 334–342. [Google Scholar] [CrossRef]
- Zhila, H.; Mahmood, H.; Rozainah, M.Z. Biodiversity and biomass of a natural and degraded mangrove forest of Peninsular Malaysia. Environ. Earth Sci. 2015, 71, 4629–4635. [Google Scholar] [CrossRef]
- Hilmi, N.; Chami, R.; Sutherland, M.D.; Hall-Spencer, J.M.; Lebleu, L.; Benitez, M.B.; Levin, L.A. The role of blue carbon in climate change mitigation and carbon stock conservation. Front. Clim. 2021, 3, 710546. [Google Scholar] [CrossRef]
- Herrera-Silveira, J.A.; Pech-Cardenas, M.A.; Morales-Ojeda, S.M.; Cinco-Castro, S.; Camacho-Rico, A.; Sosa, J.P.C.; Mendoza-Martinez, J.E.; Pech-Poot, E.Y.; Montero, J.; Teutli-Hernandez, C. Blue carbon of Mexico, carbon stocks and fluxes: A systematic review. PeerJ 2020, 8, e8790. [Google Scholar] [CrossRef]
- United Nations. Adoption of the Paris Agreement; I: Proposal by the President (Draft Decision); United Nations: New York, NY, USA, 2015; p. 2. [Google Scholar]
- Taillardat, P.; Friess, D.A.; Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 2018, 14, 20180251. [Google Scholar] [CrossRef]
- Reis, C.R.G.; Nardoto, G.B.; Oliveira, R.S. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant Soil 2017, 410, 1–19. [Google Scholar] [CrossRef]
- Karstens, S.; Lukas, M.C. Contested aquaculture development in the protected mangrove forests of the Kapuas estuary, West Kalimantan. Geoöko 2014, 35, 78–121. [Google Scholar]
- Reef, R.; Feller, I.C.; Lovelock, C.E. Nutrition of mangroves. Tree Physiol. 2010, 30, 1148–1160. [Google Scholar] [CrossRef] [PubMed]
- Oxmann, J.F.; Pham, Q.H.; Schwendenmann, L.; Stellman, J.M.; Lara, R.J. Mangrove reforestation in Vietnam: The effect of sediment physicochemical properties on nutrient cycling. Plant Soil 2010, 326, 225–241. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Yao, M. Normalisation and heavy metal contamination in mangrove sediments. Sci. Total Environ. 2019, 216, 33–39. [Google Scholar] [CrossRef]
- Parman, R.P.; Kamarudin, N.; Ibrahim, F.H.; Nuruddin, A.A.; Omar, H.; Abdul Wahab, Z. Geostatistical Analysis of Mangrove Ecosystem Health: Mapping and Modelling of Sampling Uncertainty Using Kriging. Forests 2022, 13, 1185. [Google Scholar] [CrossRef]
- Clarke, P.J.; Kerrigan, R.A. The effects of seed predators on the recruitment of mangroves. J. Ecol. 2002, 90, 728–736. [Google Scholar] [CrossRef]
- Imbert, D.; Rousteau, A.; Scherrer, P. Ecology of mangrove growth and recovery in the Lesser Antilles: State of knowledge and basis for restoration projects. Restor. Ecol. 2000, 8, 230–236. [Google Scholar] [CrossRef]
- Marine Conservation Institute. Global Marine Fishing Protection, Available at: Global Marine Protection|Marine Protection Atlas 2023. Available online: https://mpatlas.org (accessed on 24 May 2024).
- Grorud-Colvert, K.; Sullivan-Stack, J.; Roberts, C.; Constant, V.; Horta e Costa, B.; Pike, E.P.; Kingston, N.; Laffoley, D.; Sala, E.; Claudet, J.; et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 2021, 373, 1215. [Google Scholar] [CrossRef]
- Russ, G.R.; Alcala, A.C.; Maypa, A.P.; Calumpong, H.P.; White, A.T. Marine reserve benefits local fisheries. Ecol. Appl. 2004, 14, 597–606. [Google Scholar] [CrossRef]
- Gokkon, B. ‘Bali Mangrove Bay Is Now a Conservation Zone, Nixing Reclamation Plan’. Available online: https://news.mongabay.com/2019/10/bali-benoa-bay-mangroves-conservation-reclamation/ (accessed on 6 May 2024).
- Gell, F.R.; Roberts, C.M. Benefits beyond boundaries: The fishery effects of marine reserves. Trends Ecol. Evol. 2003, 18, 448–455. [Google Scholar] [CrossRef]
Species | Equation | Source |
---|---|---|
Aboveground biomass | ||
Avicennia marina | 0.1848D2.3524 | [60,61] |
Rhizophora apiculata | 0.38363D2.2348 | [62] |
Rhizophora mucronata | 0.128D2.6 | [63] |
Rhizophora stylosa | 0.105D2.68 | [62] |
Sonneratia caseolaris | 0.04975D1.94748 | [64] |
All other species * | 0.251ρD2.46 | [65] |
Belowground biomass | ||
Avicennia marina | 1.28D1.17 | [66] |
Rhizophora stylosa | 0.134D2.4 | [67] |
Sonneratia caseolaris | 0.0142D2.12146 | [64] |
All other species | 0.199ρ0.899D2.22 | [65] |
Variable a | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Total |
---|---|---|---|---|---|---|---|
Richness | 12 | 8 | 7 | 6 | 6 | 6 | 13 |
N trees | 1748 | 460 | 830 | 452 | 22 | 54 | 3566 |
Mean DBH (cm) | 9.3 | 15.7 | 18.1 | 18.5 | 109.0 | 36.7 | 34.5 |
Mean height (m) | 2.5 | 4.2 | 4.5 | 4.1 | 6.0 | 4.9 | 4.4 |
Mean diversity | 0.9 | 0.8 | 1.2 | 1.0 | 0.4 | 0.6 | 0.8 |
Variable | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Total |
---|---|---|---|---|---|---|---|
Richness | 14 | 8 | 8 | 3 | 5 | 6 | 18 |
N individuals | 123 | 65 | 26 | 46 | 63 | 22 | 345 |
Diversity | 1.66 | 1.80 | 1.45 | 0.79 | 1.18 | 1.52 | 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humber, C.; Bulbert, M.W.; Chavez, J.; Parawangsa, I.N.Y.; Majerus, K.; Campera, M. Resource Availability and Use in Restored, Unmanaged, and Aquaculture Mangrove Ecosystems in Indonesia. Resources 2024, 13, 117. https://doi.org/10.3390/resources13090117
Humber C, Bulbert MW, Chavez J, Parawangsa INY, Majerus K, Campera M. Resource Availability and Use in Restored, Unmanaged, and Aquaculture Mangrove Ecosystems in Indonesia. Resources. 2024; 13(9):117. https://doi.org/10.3390/resources13090117
Chicago/Turabian StyleHumber, Coral, Matthew W. Bulbert, Jessica Chavez, I Nyoman Yoga Parawangsa, Kara Majerus, and Marco Campera. 2024. "Resource Availability and Use in Restored, Unmanaged, and Aquaculture Mangrove Ecosystems in Indonesia" Resources 13, no. 9: 117. https://doi.org/10.3390/resources13090117
APA StyleHumber, C., Bulbert, M. W., Chavez, J., Parawangsa, I. N. Y., Majerus, K., & Campera, M. (2024). Resource Availability and Use in Restored, Unmanaged, and Aquaculture Mangrove Ecosystems in Indonesia. Resources, 13(9), 117. https://doi.org/10.3390/resources13090117