Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
- i.
- Weather data
- ii.
- Crop production data
- iii.
- Data processing
2.3. SPEI
2.4. Empirical Orthogonal Function (EOF)
3. Results and Discussion
3.1. SPEI in Southeast Asia during 1970–2019
3.2. Rice and Maize Productivity in Southeast Asia during 1970–2019
3.3. Relationship between SPEI, RICE, and MAIZE in Southeast Asia
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwabe, K.; Albiac, J.; Connor, J.D.; Hassan, R.M.; González, L.M. Drought in Arid and Semi-ARID Regions: A Multi-Disciplinary and Cross-Country Perspective; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Amnuaylojaroen, T. Perspective on the Era of Global Boiling: A Future beyond Global Warming. Adv. Meteorol. 2023, 2023, 558060. [Google Scholar] [CrossRef]
- Jung, I.W.; Chang, H. Climate change impacts on spatial patterns in drought risk in the Willamette River Basin, Oregon, USA. Theor. Appl. Climatol. 2012, 108, 355–371. [Google Scholar] [CrossRef]
- Jenkins, K.; Warren, R. Quantifying the impact of climate change on drought regimes using the Standardised Precipitation Index. Theor. Appl. Climatol. 2015, 120, 41–54. [Google Scholar] [CrossRef]
- Dubrovsky, M.; Svoboda, M.D.; Trnka, M.; Hayes, M.J.; Wilhite, D.A.; Zalud, Z.; Hlavinka, P. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor. Appl. Climatol. 2009, 96, 155–171. [Google Scholar] [CrossRef]
- Lee, D.-K.; Cha, D.-H.; Jin, C.-S.; Choi, S.-J. A regional climate change simulation over East Asia. Asia-Pac. J. Atmos. Sci. 2013, 49, 655–664. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef]
- Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.; Nicholls, N.; Chambers, L.; Collins, D.; Daw, G.; Finet, A.; Gunawan, D.; et al. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol. 2001, 21, 269–284. [Google Scholar] [CrossRef]
- Masud, M.B.; Soni, P.; Shrestha, S.; Tripathi, N.K. Changes in climate extremes over North Thailand, 1960–2099. J. Climatol. 2016, 2016, 4289454. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Chanvichit, P. Projection of near-future climate change and agricultural drought in Mainland Southeast Asia under RCP8.5. Clim. Chang. 2019, 155, 175–193. [Google Scholar] [CrossRef]
- Liang, X.Z.; Wu, Y.; Chambers, R.G.; Schmoldt, D.L.; Gao, W.; Liu, C.; Liu, Y.A.; Sun, C.; Kennedy, J.A. Determining climate effects on US total agricultural productivity. Proc. Natl. Acad. Sci. USA 2017, 114, E2285–E2292. [Google Scholar] [CrossRef]
- Troy, T.J.; Kipgen, C.; Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 2015, 10, 054013. [Google Scholar] [CrossRef]
- Zipper, S.C.; Qiu, J.; Kucharik, C.J. Drought effects on US maize and soybean production: Spatiotemporal patterns and his-torical changes. Environ. Res. Lett. 2016, 11, 094021. [Google Scholar] [CrossRef]
- Redfern, S.K.; Azzu, N.; Binamira, J.S. Rice in Southeast Asia: Facing risks and vulnerabilities to respond to climate change. Build Resil. Adapt. Clim. Change Agri. Sect. 2012, 23, 1–14. [Google Scholar]
- Amnuaylojaroen, T.; Parasin, N. The Future Extreme Temperature under RCP8.5 Reduces the Yields of Major Crops in Northern Peninsular of Southeast Asia. Sci. World J. 2022, 2022, 1410849. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Chanvichit, P.; Janta, R.; Surapipith, V. Projection of rice and maize productions in Northern Thailand under climate change scenario RCP8.5. Agriculture 2021, 11, 23. [Google Scholar] [CrossRef]
- Zhuang, J.; Suphachalasai, S.; Samson, J.N. The economics of climate change in Southeast Asia. Hum. Secur. Clim. Chang. Southeast Asia Manag. Risk Resil. 2012, 18, 18–42. [Google Scholar]
- Sekhar, C. Climate change and rice economy in Asia: Implications for trade policy. In The State of Agricultural Commodity Markets (SOCO); FAO: Rome, Italy, 2018. [Google Scholar]
- FAO. The impact of disasters and crises on agriculture and food security: 2021. In The Impact of Disasters and Crises on Agriculture and Food Security: 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Gin, O.K.; Tuan, H.A. Early Modern Southeast Asia, 1350–1800; Routledge: London, UK, 2015. [Google Scholar]
- Wang, B. Rainy season of the Asian-Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef]
- Falvey, L. History of Rice in Southeast Asia and Australia. Rice: Origin, Antiquity and History; CRC Press: Boca Raton, FL, USA, 2010; pp. 183–224. [Google Scholar]
- Lal, M. Implications of climate change in sustained agricultural productivity in South Asia. Reg. Environ. Chang. 2011, 11 (Suppl. S1), 79–94. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standard-ized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Simplified forms for the standardized FAO-56 Penman-Monteith reference evapotranspiration using limited weather data. J. Hydrol. 2013, 505, 13–23. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate da-taset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Nikmatillah, V.M.; Anggraeni, D.; Hadi, A.F. Prediction interval in seasonal autoregressive integrated moving average (SARIMA) model for rainfall forecasting and drought. In Proceedings of the International Conference on Mathematics and Islam, Mataram, Indonesia, 3–5 August 2018. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 February 2024).
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; MIT Department of Meteorology: Cambridge, MA, USA, 1956. [Google Scholar]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Monahan, A.H.; Fyfe, J.C.; Ambaum, M.H.; Stephenson, D.B.; North, G.R. Empirical orthogonal functions: The medium is the message. J. Clim. 2009, 22, 6501–6514. [Google Scholar] [CrossRef]
- von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Heim, R.R., Jr. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Rosenthal, S. Climate Change and Agriculture: A Review of Impacts and Adaptations; The International Bank for Reconstruction and Development/THE WORLD BANK: Washington, DC, USA, 2013. [Google Scholar]
- Kouadio, L.; Byrareddy, V.M.; Sawadogo, A.; Newlands, N.K. Probabilistic yield forecasting of robusta coffee at the farm scale using agroclimatic and remote sensing derived indices. Agric. For. Meteorol. 2021, 306, 108449. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Eigenbrode, S.D.; Binns, W.P.; Huggins, D.R. Confronting climate change challenges to dryland cereal production: A call for collaborative, transdisciplinary research, and producer engagement. Front. Ecol. Evol. 2018, 5, 164. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate change and drought: From past to future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteoro-Log. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Spencer, R.W.; Braswell, W.D. The role of ENSO in global ocean temperature changes during 1955–2011 simulated with a 1D climate model. Asia-Pac. J. Atmos. Sci. 2014, 50, 229–237. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. A J. R. Meteorol. Soc. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. (Eds.) The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions; Routledge Taylor and Francis Group: London, UK, 2000. [Google Scholar]
- FAO. The State of Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Pingali, P. Westernization of Asian diets and the transformation of food systems: Implications for research and policy. Food Policy 2007, 32, 281–298. [Google Scholar] [CrossRef]
- Barker, R.; Herdt, R.W.; Rose, B. The Rice Economy of Asia; International Rice Research Institute (IRRI): Manila, Philippine, 1985. [Google Scholar]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed]
- Timmer, C.P. Rice and structural transformation. In Rice in the Global Economy: Strategic Research and Policy Issues for Food Security; International Rice Research Institute (IRRI): Manila, Philippine, 2010; pp. 37–60. [Google Scholar]
- International Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Zhang, L.; Zhang, Z.; Zhang, J.; Luo, Y.; Tao, F. Response of rice phenology to climate warming weakened across China during 1981–2018: Did climatic or anthropogenic factors play a role? Environ. Res. Lett. 2022, 17, 064029. [Google Scholar] [CrossRef]
- Chhinh, N.; Millington, A. Drought monitoring for rice production in Cambodia. Climate 2015, 3, 792–811. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, T.; Atienza, M.; Zhao, Y.; Nguyen, H.; Sheng, H.; Olukayode, T.; Song, H.; Panjvani, K.; Magalhaes, J.; et al. Constitutive basis of root system architecture: Uncovering a promising trait for breeding nutrient-and drought-resilient crops. Abiotech 2023, 4, 315–331. [Google Scholar] [CrossRef]
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture Sourcebook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- dos Santos, E.; Fortini, R.; Cardoso, L.; Zanuncio, J. Climate change in Brazilian agriculture: Vulnerability and adaptation assessment. Int. J. Environ. Sci. Technol. 2023, 20, 10713–10730. [Google Scholar] [CrossRef]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.K.; Heuer, S. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron. 2009, 102, 91–133. [Google Scholar]
- Sharma, G.; Shrestha, S.; Kunwar, S.; Tseng, T.-M. Crop diversification for improved weed management: A review. Agriculture 2021, 11, 461. [Google Scholar] [CrossRef]
- Gruere, G.P.; Bouët, A.; Mevel, S. Genetically Modified Food and International Trade: The Case of India, Bangladesh, Indonesia, and the Philippines; International Food Policy Research Institute: Washington, DC USA, 2007. [Google Scholar]
- FAO. Building Agricultural Resilience to Climate Variability; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
Drought Severity Classification | Definition |
---|---|
Extreme wet | A scenario where SPEI values are higher than 2.0, indicating notably higher moisture than normal. |
Severe wet | A scenario where SPEI values are between 1.50 and 1.99, indicating moisture levels considerably above normal. |
Moderate wet | A scenario where SPEI values are between 1.00 and 1.49, indicating slightly higher than normal moisture levels. |
Normal | A scenario where SPEI values are between −0.99 and 0.99, indicating balanced moisture conditions |
Moderate drought | A scenario where SPEI values are between −1.00 and −1.49, indicating that the onset of dry conditions could lead to drought if prolonged |
Severe drought | A scenario where SPEI values are between −1.50 and −1.99, indicating a serious drought condition that requires attention to prevent worsening impacts |
Extreme drought | A scenario where SPEI values are less than −2.00, indicating extremely low moisture levels that characterize extreme drought conditions |
Decade | 1-Month | 6-Month | 12-Month |
---|---|---|---|
1970–1979 | 0.08 | 0.14 | 0.19 |
1980–1989 | −0.01 | 0.00 | −0.01 |
1990–1999 | −0.12 | −0.25 | −0.35 |
2000–2009 | 0.05 | 0.19 | 0.27 |
2010–2019 | −0.01 | 0.03 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amnuaylojaroen, T.; Chanvichit, P. Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia. Resources 2024, 13, 44. https://doi.org/10.3390/resources13030044
Amnuaylojaroen T, Chanvichit P. Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia. Resources. 2024; 13(3):44. https://doi.org/10.3390/resources13030044
Chicago/Turabian StyleAmnuaylojaroen, Teerachai, and Pavinee Chanvichit. 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia" Resources 13, no. 3: 44. https://doi.org/10.3390/resources13030044
APA StyleAmnuaylojaroen, T., & Chanvichit, P. (2024). Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia. Resources, 13(3), 44. https://doi.org/10.3390/resources13030044