Role of Lake Morphometric and Environmental Drivers of Ice Cover Formation and Occurrence on Temperate Lakes: A Case Study from the Eastern Baltic Lakeland, Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cavaliere, E.; Fournier, I.B.; Hazuková, V.; Rue, G.P.; Sadro, S.; Berger, S.A.; Cotner, J.B.; Dugan, H.A.; Hampton, S.E.; Lottig, N.R.; et al. The Lake Ice Continuum Concept: Influence of Winter Conditions on Energy and Ecosystem Dynamics. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006165. [Google Scholar] [CrossRef]
- Hughes, K.S.; Forrest, A.L.; Cortés, A.; Bombardelli, F.A. Transitional circulation patterns from full ice cover to ice-off in a seasonally ice-covered lake. Aquat. Sci. 2024, 86, 40. [Google Scholar] [CrossRef]
- Yom-Tov, Y.; Roos, A.; Mortensen, P.; Wiig, Ø.; Yom-Tov, S.; Heggberget, T.M. Recent changes in body size of the eurasian otter Lutra lutra in Sweden. Ambio 2010, 39, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Helland, I.P.; Finstad, A.G.; Forseth, T.; Hesthagen, T.; Ugedal, O. Ice-cover effects on competitive interactions between two fish species. J. Anim. Ecol. 2011, 80, 539–547. [Google Scholar] [CrossRef]
- Prati, S.; Henriksen, E.H.; Knudsen, R.; Amundsen, P.-A. Seasonal dietary shifts enhance parasite transmission to lake salmonids during ice cover. Ecol. Evol. 2020, 10, 4031–4043. [Google Scholar] [CrossRef]
- Hampton, S.E.; Galloway, A.W.E.; Powers, S.M.; Ozersky, T.; Woo, K.H.; Batt, R.D.; Labou, S.G.; O’Reilly, C.M.; Sharma, S.; Lottig, N.R.; et al. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [Google Scholar] [CrossRef]
- Jansen, J.; MacIntyre, S.; Barrett, D.C.; Chin, Y.-P.; Cortés, A.; Forrest, A.L.; Hrycik, A.R.; Martin, R.; McMeans, B.C.; Rautio, M.; et al. Winter limnology: How do hydrodynamics and biogeochemistry shape ecosystems under ice? J. Geophys. Res. Biogeosci. 2021, 126, e2020JG00637. [Google Scholar] [CrossRef]
- Cavaliere, E.; Baulch, H.M. Winter in two phases: Long-term study of a shallow reservoir in winter. Limnol. Oceanogr. 2021, 66, 1335–1352. [Google Scholar] [CrossRef]
- Hori, Y.; Cheng, V.Y.S.; Gough, W.A.; Jien, J.Y.; Tsuji, L.J.S. Implications of projected climate change on winter road systems in Ontario’s Far North, Canada. Clim. Change 2018, 148, 109–122. [Google Scholar] [CrossRef]
- Song, Y.; Fujisaki-Manome, A.; Barker, C.H.; MacFadyen, A.; Kessler, J.; Titze, D.; Wang, J. Modeling study on oil spill transport in the Great Lakes: The unignorable impact of ice cover. J. Environ. Manag. 2024, 358, 120810. [Google Scholar] [CrossRef]
- Barnes, P.W.; Kempema, E.W.; Reimnitz, E.; McCormick, M. The influence of ice on southern Lake Michigan coastal erosion. J. Great Lakes Res. 1994, 20, 179–195. [Google Scholar] [CrossRef]
- Rzętała, M.A. Procesy Brzegowe i Osady Denne Wybranych Zbiorników Wodnych w Warunkach Zróżnicowanej Antropopresji (na Przykładzie Wyżyny Śląskiej i jej Obrzeży); Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2003. [Google Scholar]
- Choiński, A.; Ptak, M.; Strzelczak, A. Areal variation in ice cover thickness on lake Morskie Oko (Tatra Mountains). Carpathian J. Earth Environ. Sci. 2013, 8, 97–102. [Google Scholar]
- Choiński, A.; Ptak, M.; Skowron, R.; Strzelczak, A. Changes in ice phenology on polish lakes from 1961–2010 related to location and morphometry. Limnologica 2015, 53, 42–49. [Google Scholar] [CrossRef]
- Elo, A.R. Long-term modelling of winter ice periods for morphologically different lakes. Hydrol. Res. 2006, 37, 107–119. [Google Scholar] [CrossRef]
- Yao, H.; Rusak, J.A.; Paterson, A.; Somers, K.M.; Mackay, M.; Girard, R.; Ingram, R.; McConnell, C. The interplay of local and regional factors in generating temporal changes in the ice phenology of dickie lake, south-central Ontario, Canada. Inland Waters 2013, 3, 1–14. [Google Scholar] [CrossRef]
- Solarski, H. Ekologiczne podstawy gospodarowania wodą w rolnictwie Pojezierza Mazurskiego. Zesz. Probl. Postępów Nauk Rol. 1989, 343, 9–17. [Google Scholar]
- Hillbricht-Ilkowska, A. Ochrona jezior i krajobrazu pojeziernego—Problem, procesy, perspektywy. Kosmos 2005, 54, 285–302. [Google Scholar]
- Zielińska-Szczepkowska, J.; Zabielska, I. Atrakcyjność turystyczna województwa warmińsko-mazurskiego w sezonie letnim 2008 w opinii turystów. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2010, 111, 897–908. [Google Scholar]
- Olszowska, M. Mazurskie impresje. Wszechswiat 2010, 111, 1–3. [Google Scholar]
- Marks, E.; Jaszczak, A.; Połucha, I. Kierunki rozwoju turystyki zrównoważonej w województwie warmińsko-mazurskim. Problemy. Ekologii Krajobrazu. Rekreac. W Kraj. O Wysokim Potencjale 2013, 34, 189–195. [Google Scholar]
- Skowron, R. Changeability of the ice cover on the lakes of northern Poland in the light of climatic changes. Bull. Geogr. Phisical Geogr. Ser. 2009, 1, 103–124. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Nowak, B. Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland—Lake Śniardw. J. Hydrol. Hydrodyn. 2020, 68, 260–270. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M. The disappearance of ice cover on temperate lakes (Central Europe) as a result of global warming. Geogr. J. 2021, 187, 200–213. [Google Scholar] [CrossRef]
- Bartosiewicz, M.; Ptak, M.; Woolwey, I.; Sojka, M. On thinning ice: Effects of atmospheric warming, stilling and rainfall intensity on ice conditions in differently shaped lakes. J. Hydrol. 2021, 597, 125724. [Google Scholar] [CrossRef]
- Młodzik, A.; Cieśliński, R.; Chlost, I. Fluctuations of ice in a lake due to the impact of the North Atlantic Oscillation (1960/61–2009/10)–a case study of Łebsko Lake. Oceanologia 2024, 66, 153–166. [Google Scholar] [CrossRef]
- Girjatowicz, J.P. The influence of the North Atlantic Oscillation on ice conditions in coastal lakes of the Southern Baltic Sea. Ann. Limnol. Int. J. Lim. 2003, 39, 71–80. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Ptak, M.; Baczyńska, A. Effect of the north atlantic oscillation on ice phenomena on selected lakes in Poland over the years 1961–2010. Quaest. Geogr. 2013, 32, 119–128. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Choiński, A.; Ptak, M.; Skowron, R. Effect of the North Atlantic Oscillation on the Pattern of Lake Ice Phenology in Poland. Acta Geophys. 2015, 63, 1664–1684. [Google Scholar] [CrossRef]
- Strugała, B. Zróżnicowanie pokrywy lodowej wybranych zbiorników wodnych w Świętochłowicach w 2006 roku. Z Badań Wpływem Antropopresji Środowisko 2006, 7, 98–101. [Google Scholar]
- Gądek, B.; Szumny, M.; Szypula, B. Classification of the Tatra Mountain lakes in terms of the duration of their ice cover (Poland and Slovakia). J. Limnol. 2020, 79, 70–81. [Google Scholar] [CrossRef]
- Solarski, M.; Pradela, A.; Rzętała, M. Natural and anthropgenic infuences on ice formation on various water bodies of the Silesian Upland (Southern Poland). Limnol. Rev. 2011, 11, 33–44. [Google Scholar] [CrossRef]
- Solarski, M.; Szumny, M. Conditions of spatiotemporal variability of the thickness of the ice cover on lakes in the Tatra Mountains. J. Mt. Sci. 2020, 17, 2369–2386. [Google Scholar] [CrossRef]
- Rzętała, M. Funkcjonowanie pokrywy lodowej niewielkiego zbiornika wodnego w Czeladzi w latach 2010–2012. Acta Geogr. Siles 2012, 2, 71–76. [Google Scholar]
- Machowski, R. Course of ice phenomena in small water reservoir in Katowice (Poland) in the winter season 2011/2012. Environ. Socio-Econ. Stud. 2013, 1, 7–13. [Google Scholar] [CrossRef]
- Kondracki, J. Geografia Regionalna Polski; PWN, Wyd. 3.: Warszawa, Poland, 2013. [Google Scholar]
- Instytut Meteorologii i Gospodarki Wodnej. Atlas Jezior Polski: Jeziora Pojezierza Mazurskiego i Polski Południowej; Jańczaka, J., Ed.; Bogucki Wydaw Naukowe: Poznań, Poland, 1999. [Google Scholar]
- Ter Braak, C.J.; Prentice, I.C. A theory of gradient analysis. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 1988; Volume 18, pp. 271–317. [Google Scholar]
- Oksanen, J. Vegan: Community Ecology Package-R Package Version 2.6-6.1. 2024. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 11 July 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 11 July 2024).
- Solarski, M.; Rzetala, M. Determinants of Spatial Variability of Ice Thickness in Lakes in High Mountains of the Temperate Zone—The Case of the Tatra Mountains. Water 2022, 14, 2360. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H. Effects of changing climate on ice cover in three morphometrically different lakes. Hydrol. Process. 2017, 31, 308–323. [Google Scholar] [CrossRef]
- L’Abée-Lund, J.H.; Vøllestad, L.A.; Brittain, J.E.; Kvambekk, A.S.; Solvang, T. Geographic variation and temporal trends in ice phenology in Norwegian lakes during the period 1890–2020. Cryosphere 2021, 15, 2333–2356. [Google Scholar] [CrossRef]
- Yao, X.; Li, L.; Zhao, J.; Sun, M.; Li, J.; Gong, P.; An, L. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011. J. Geogr. Sci. 2016, 26, 70–82. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Strzelczak, A. Changeability of accumulated heat content in alpine-type lakes, Polish. J. Environ. Stud. 2015, 24, 2363–2369. [Google Scholar]
- Vavrus, S.J.; Wynne, R.H.; Foley, J.A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol. Oceanogr. 1996, 41, 822–831. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.-Q.; Yao, G.; Shen, X. MODIS-observed variations of lake ice phenology in Xinjiang, China. Clim. Chang. 2020, 158, 575–592. [Google Scholar] [CrossRef]
- Solarski, M.; Rzetala, M. Changes in the Thickness of Ice Cover on Water Bodies Subject to Human Pressure (Silesian Upland, Southern Poland). Front. Earth Sci. 2021, 920, 675216. [Google Scholar] [CrossRef]
- Sojka, M.; Ptak, M.; Zhu, S. Use of Landsat satellite images in the assessment of the variability of ice cover in Polish lakes. Remote Sens. 2023, 15, 3030. [Google Scholar] [CrossRef]
- Yang, Q.; Song, K.; Wen, Z.; Hao, X.; Fang, C. Recent trends of ice phenology for eight large lakes using MODIS products in Northeast China. Int. J. Remote Sens. 2019, 40, 5388–5410. [Google Scholar] [CrossRef]
- Korhonen, J. Long-term changes in lake ice cover in Finland. Nord. Hydrol. 2006, 37, 347–363. [Google Scholar] [CrossRef]
- Pöysä, H. Local variation in the timing and advancement of lake ice breakup and impacts on settling dynamics in a migratory waterbird. Sci. Total Environ. 2022, 811, 151397. [Google Scholar] [CrossRef]
- Smits, A.P.; Gomez, N.W.; Dozier, J.; Sadro, S. Winter Climate and Lake Morphology Control Ice Phenology and Under-Ice Temperature and Oxygen Regimes in Mountain Lakes. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006277. [Google Scholar] [CrossRef]
- Kincaid, D.W.; Adair, E.C.; Joung, D.J.; Stockwell, J.D.; Schroth, A.W. Ice cover and thaw events influence nitrogen partitioning and concentration in two shallow eutrophic lakes. Biogeochem. Lett. 2022, 157, 15–29. [Google Scholar] [CrossRef]
- Kleeberg, A.; Freidank, A.; Jöhnk, K. Effects of ice cover on sediment resuspension and phosphorus entrainment in shallow lakes: Combining in situ experiments and wind-wave modelling. Limnol. Oceanogr. 2013, 58, 1819–1833. [Google Scholar] [CrossRef]
- Kozłowski, J.; Kozłowski, K.; Gomułka, P.; Klus, D. Liczebność i Struktura Płciowa Raka Błotnego Astacus Leptodactylus w Jeziorze Mutek. Działalność Gospodarstw Rybackich w 2016 Roku—Uwarunkowania Ekonomiczne, Prawne i Ekologiczne; Mickiewicz, M., Wołos, A., Eds.; Instytut Rybactwa Śódlądowego: Olsztyn, Poland, 2017. [Google Scholar]
- Pełechata, A.; Pełechaty, M.; Pukacz, A. Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquat. Bot. 2015, 124, 10–18. [Google Scholar] [CrossRef]
- Kalinowska, K.; Grabowska, M. Autotrophic and heterotrophic plankton under ice in a eutrophic temperate lake. Hydrobiologia 2016, 777, 111–118. [Google Scholar] [CrossRef]
- Marchowski, D.; Mohr, A.; Ławicki, Ł.; Jankowiak, Ł. Warmer winters increase the breeding success of the Goosander: The case of the Pomeranian Lake District in Poland. Ardea 2022, 110, 31–40. [Google Scholar] [CrossRef]
- Lossow, K. Znaczenie jezior w krajobrazie młodoglacjalnym Pojezierza Mazurskiego. Zesz. Probl. Post. Nauk Rol. 1996, 431, 47–59. [Google Scholar]
- Marks, E.; Gadomska, W.; Połucha, I. Obszary niszowe turystyki wiejskiej w wojewódz-twie warmińsko-mazurskim. Stud. KPZK Wydaw. Kom. Przestrz. Zagospod. Kraj. PAN 2015, 163, 243–251. [Google Scholar]
Statistics | IC_S (Day) | IC_E (Day) | IC_T (cm) | IC_D (days) | IC_B (Days) | |
---|---|---|---|---|---|---|
Minimum | 40 | 130 | 21 | 69 | 0 | |
Mean | 55 | 137 | 30 | 82 | 60 | |
Maximum | 66 | 147 | 36 | 99 | 122 | |
Standard deviation | 6.8 | 3.5 | 4.0 | 7.8 | 28.4 | |
Coefficient of variation | 12.4 | 2.5 | 13.4 | 9.4 | 47.4 | |
Skewness | −0.30 | 0.49 | −0.42 | 0.28 | 0.23 | |
Kurtosis | −0.88 | 0.99 | −0.45 | −0.43 | −0.45 | |
Percentile | 5% | 43 | 131 | 22 | 69 | 19 |
10% | 45 | 133 | 24 | 71 | 26 | |
25% | 49 | 135 | 28 | 77 | 38 | |
50% (Median) | 56 | 137 | 30 | 82 | 57 | |
75% | 61 | 139 | 33 | 87 | 81 | |
90% | 63 | 141 | 35 | 95 | 107 | |
95% | 65 | 144 | 36 | 97 | 112 | |
IQR | 12 | 4 | 5 | 10 | 43 | |
IQR/Median | 0.22 | 0.03 | 0.16 | 0.12 | 0.75 |
Parameters | IC_S | IC_E | IC_D | IC_B | IC_T |
---|---|---|---|---|---|
Lon | −0.12 | 0.36 | 0.25 | −0.13 | 0.38 |
Lat | 0.10 | 0.10 | −0.02 | −0.06 | 0.43 |
Alt | −0.23 | 0.20 | 0.33 | 0.03 | −0.24 |
Area | 0.16 | 0.00 | −0.18 | 0.00 | −0.12 |
Vol | 0.31 | 0.11 | −0.24 | −0.30 | −0.03 |
MeanD | 0.40 | 0.33 | −0.22 | −0.56 | 0.00 |
MaxD | 0.35 | 0.19 | −0.25 | −0.41 | −0.09 |
SD | 0.00 | −0.21 | −0.07 | 0.18 | 0.06 |
EI | −0.11 | −0.14 | 0.01 | 0.26 | −0.09 |
Arti | 0.19 | −0.15 | −0.23 | −0.13 | 0.01 |
Agr | 0.19 | 0.10 | −0.10 | −0.10 | 0.41 |
For | −0.30 | 0.00 | 0.22 | 0.08 | −0.41 |
Variables | RDA 1 | RDA2 |
---|---|---|
Lon | 0.22 | −0.70 |
Alt | 0.20 | −0.16 |
MeanD | −0.64 | −0.31 |
For | 0.46 | 0.38 |
Arti | −0.41 | 0.22 |
Vol | −0.45 | −0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptak, M.; Amnuaylojaroen, T.; Huang, W.; Wang, L.; Sojka, M. Role of Lake Morphometric and Environmental Drivers of Ice Cover Formation and Occurrence on Temperate Lakes: A Case Study from the Eastern Baltic Lakeland, Poland. Resources 2024, 13, 146. https://doi.org/10.3390/resources13100146
Ptak M, Amnuaylojaroen T, Huang W, Wang L, Sojka M. Role of Lake Morphometric and Environmental Drivers of Ice Cover Formation and Occurrence on Temperate Lakes: A Case Study from the Eastern Baltic Lakeland, Poland. Resources. 2024; 13(10):146. https://doi.org/10.3390/resources13100146
Chicago/Turabian StylePtak, Mariusz, Teerachai Amnuaylojaroen, Wenfeng Huang, Li Wang, and Mariusz Sojka. 2024. "Role of Lake Morphometric and Environmental Drivers of Ice Cover Formation and Occurrence on Temperate Lakes: A Case Study from the Eastern Baltic Lakeland, Poland" Resources 13, no. 10: 146. https://doi.org/10.3390/resources13100146
APA StylePtak, M., Amnuaylojaroen, T., Huang, W., Wang, L., & Sojka, M. (2024). Role of Lake Morphometric and Environmental Drivers of Ice Cover Formation and Occurrence on Temperate Lakes: A Case Study from the Eastern Baltic Lakeland, Poland. Resources, 13(10), 146. https://doi.org/10.3390/resources13100146