Multivariate Analysis of Geological Data for Regional Studies of Geodiversity
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Geology
2.3. Landscape Types and Landscape Areas
2.4. Terrain Ruggedness
2.5. Data Preparation for Multivariate Analysis
2.6. Principle Component Analyses (PCA) Ordination and Multivariate Clustering
3. Results
3.1. Ordination Results
3.2. Multivariate Visualisation of the Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Cluster ID | Count of Cluster ID | Average of PC1 | Average of PC2 | Average of PC3 | Average of PC4 |
1 | 1035 | −0.898 | 0.899 | 0.633 | −0.656 |
2 | 1198 | −0.561 | 0.480 | −1.564 | −0.538 |
3 | 579 | −0.983 | −0.630 | 1.234 | 1.078 |
4 | 1139 | 0.600 | −0.743 | 0.925 | −0.725 |
5 | 600 | 1.003 | 0.077 | −1.739 | 0.132 |
6 | 568 | −1.125 | 1.022 | 0.607 | 1.387 |
7 | 922 | −1.151 | −1.623 | −0.591 | −0.033 |
8 | 551 | 0.802 | −0.994 | 0.443 | 1.780 |
9 | 480 | 1.092 | 0.484 | 0.307 | 1.948 |
10 | 828 | −0.842 | −0.746 | 1.141 | −0.575 |
11 | 975 | 1.313 | −0.199 | 0.472 | −0.028 |
12 | 1035 | 0.442 | −1.313 | −0.962 | −0.536 |
13 | 662 | −0.040 | 1.074 | 0.423 | 0.365 |
14 | 1291 | 0.207 | 1.059 | 0.378 | −0.958 |
15 | 577 | −1.161 | 0.528 | −1.431 | 1.332 |
16 | 728 | 1.385 | 0.932 | −0.069 | 0.080 |
References
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed.; Wiley Blackwell: Chichester, UK, 2013; 495p. [Google Scholar]
- Australian Heritage Commission. Australian Natural Heritage Charter, 2nd ed.; Australian Heritage Commission: Canberra, Australia, 2002; 26p.
- Johansson, C. Geodiversitet i Nordisk Naturvård; Nordisk Ministerråd: Copenhagen, Denmark, 2000; 149p. [Google Scholar]
- Noss, R.F. Indicators for monitoring biodiversity: A hierarchical approach. Biol. Conserv. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- Chiarucci, A.; Bacaro, G.; Scheiner, S.M. Old and new challenges in using species diversity for assessing biodiversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 2426–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, C.; Hill, S.; Newbold, T.; Hudson, L.N.; Börger, L.; Contu, S.; Hoskins, A.J.; Ferrier, S.; Purvis, A.; Scharlemann, J.P.W. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 2016, 7, 12306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forte, J.P.; Brilha, J.; Pereira, D.Í.; Nolasco, M. Kernel density applied to the quantitative assessment of geodiversity. Geoheritage 2018, 10, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Supriatna, J. Biodiversity Indexes: Value and evaluation purposes. Web Conf. 2018, 48, 01001. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, E.; Ruiz-Flano, P. Geodiversity: A theoretical and applied concept. Geogr. Helv. 2007, 62, 140–147. [Google Scholar] [CrossRef]
- Hjort, J.; Luoto, M. Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 2010, 115, 109–116. [Google Scholar] [CrossRef]
- Pereira, D.; Pereira, P.; Brilha, J.; Santos, L. Geodiversity assessment of Paraná state (Brazil): An innovative approach. Environ. Manag. 2013, 52, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, A.M.; Pereira, D. A New Methodological Contribution for the Geodiversity Assessment: Applicability to Ceará State (Brazil). Geoheritage 2017, 10, 591–605. [Google Scholar] [CrossRef]
- Koistinen, T.; Stephens, M.B.; Bogatchev, V.; Nordgulen, Ø.; Wennerstrøm, M.; Korhonen, J. Geological map of the Fennoscandian Shield, scale 1:2 million. In Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia; Genimap Oy: Helsinki, Finland, 2001. [Google Scholar]
- Ramberg, I.; Bryhni, I.; Nøttvedt, A.; Rangnes, K. The Making of a Land. Geology of Norway; Norsk Geologisk Forening: Trondheim, Norway, 2008; 624p. [Google Scholar]
- Stroeven, A.P.; Hättestrand, C.; Kleman, J.; Heyman, J.; Fabel, D.; Fredin, O.; Goodfellow, B.W.; Harbor, J.M.; Jansen, J.D.; Olsen, L.; et al. Deglaciation of Fennoscandia, Quat. Sci. Rev. 2016, 147, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Stephens, M.B.; Weihed, J.B. Sweden: Lithotectonic framework. Tectonic Evolution and Mineral Resources. Geol. Soc. Lond. Mem. 2020, 50, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Olsen, L.; Fredin, O.; Olesen, O. Quaternary Geology of Norway-Geological Survey of Norway Special Publication 13; Geological Survey of Norway: Trondheim, Norway, 2013; 173p. [Google Scholar]
- Halvorsen, R.; Skarpaas, O.; Bryn, A.; Bratli, H.; Erikstad, L.; Simensen, T.; Lieungh, E. Towards a systematics of ecodiversity: The ecosyst framework. Glob. Ecol. 2020, 29, 1887–1906. [Google Scholar] [CrossRef]
- Simensen, T.; Erikstad, L.; Halvorsen, R. Diversity and distribution of landscape types in Norway. Norsk Geog. Tidsskr. 2021, 75, 79–100. [Google Scholar] [CrossRef]
- Simensen, T.; Halvorsen, R.; Erikstad, L. Gradient analysis of landscape variation in Norway. bioRxiv 2020, 161372. [Google Scholar] [CrossRef]
- Gruber, S.; Peckham, S. Land-surface parameters and objects in hydrology. In Geomorphometry: Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 171–194. [Google Scholar]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Sappington, J.M.; Longshore, K.M.; Thompson, D.B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert. J. Wildl. Manag. 2007, 71, 1419–1426. [Google Scholar] [CrossRef]
- Jenness, J. Topographic Position Index (tpi_jen.avx) Extension for ArcView 3.x, v. 1. Jenness Enterprises. Available online: http://www.jennessent.com/arcview/tpi.htm (accessed on 20 May 2022).
- Conrad, O. SAGA-GIS Module Library Documentation (v2.2.5). Available online: https://saga-gis.sourceforge.io/saga_tool_doc/2.2.5/ta_lighting_5.html (accessed on 20 May 2022).
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; Freeman: New York, NY, USA, 1995; 887p. [Google Scholar]
- Økland, R.H.; Økland, T.; Rydgren, K. Vegetation–environment relationships of boreal spruce swamp forests in Østmarka nature reserve, SE Norway. Sommerfeltia 2001, 29, 1. [Google Scholar] [CrossRef]
- Braak, C.J.F.T. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Guillaume Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package, Ver. 2.5-7. Available online: http://cran.r-project.org (accessed on 11 April 2022).
- Manosso, F.C.; de Nóbrega, M.T. Calculation of geodiversity from landscape units of the cadeado range region in Paraná, Brazil. Geoheritage 2016, 8, 189–199. [Google Scholar] [CrossRef]
1 m Resolution | 10 m Resolution | |||||
---|---|---|---|---|---|---|
Plancurv. | Aspectdiv. | Rough/TRI | VRM | Aspectdiv. | VRM | |
A | X | XX | X | X | XX | XX |
B | XX | X | XX | XXX | - | - |
C | XXX | X | XXX | XXX | X | XXX |
D | - | XXX | - | XX | XXX | - |
E | - | XX | - | XX | - | - |
F | X | XX | X | XX | - | - |
G | - | XXX | - | - | XX | - |
H | XX | XXX | X | XXX | XX | - |
I | XX | XXX | X | XXX | XX | - |
Variable Description | Short Name | Measure Units |
---|---|---|
Bedrock units: Ultrabasic, basic and intermediate intrusive rock inc. mafic dykes (gabbro, diorite, dolerite, etc.) | Basic_intr | Coverage (mean number of cells relative to number of cells in the polygon) |
Alkaline intrusive rock | Alkaline_intr | |
Acidic volcanic rock (rhyolite, dacite, etc.) | Acidic_volc | |
Ultrabasic, basic, and intermediate volcanic rock (basalt, andesite, etc.) | Basic_volc | |
Carbonate-rich rock (limestone, dolomite, marble, etc.) | Carbonate | |
Quartz-feldspar-rich sedimentary rock (sandstone, greywacke, etc.) | Quartz_sed | |
Mica-rich sedimentary rock (shale, siltstone, etc.) | Mica_sed | |
Mica-rich metamorphic rock (phyllite, schist, paragneiss, etc.) | Mica_met | |
Ultrabasic, basic, and intermediate metamorphic rock (amphibolite, eclogite, etc.) | Basic_met | |
Metamorphic rock, unspecified composition (diatexitic migmatite, mylonite, granofels, etc.) | Unspecified_met | |
Acidic intrusive rock (granite, granodiorite, monzonite, etc.) + Quartz-feldspar-rich metamorphic rock (gneiss, granitic gneiss, etc.) | Acidic_intr | |
Rock type diversity | Rock div. | |
Soil and water: Water (lakes and broad rivers) | Water | |
Peat | Peat | |
Bare rock | Bare | |
Continous till cover | Till | |
Fluvialdeposits | Fluvial | |
Thin till cover | Thin till | |
Glaciofluvial deposits? | Glaciofluvial | |
Scree deposits | Scree | |
Weathering bedrock | Weathering | |
Anthropogenic material | Anthropogenic | |
Glaciolacustrine deposits | Glacilac | |
Beach deposits | Beach | |
Fiord- and sea deposits | Fiord/sea deposits | |
Aeolian sediments | Aeolian | |
Clayey till | Clay | |
Soil deposit diversity | Soil diversity | |
Terrain indices and measurements: Relative relieff 100 m resolution | RR100 | Elevation range in metres |
Terrain position index [25] values (TPI) larger than 15 m at 100 m resolution | TPI100 | Coverage |
Distance to TPI values larger than 15 m at 100 m resolution | DistTPI100 | Mean distance in metres |
Vector ruggedness values at 100 m resolution | VRM100 | Mean values |
Number of pixels with slope values larger than 30 degrees | Cliff100 | Coverage |
Positive openess [26] | Posopen | Mean value |
Relative relief 10 m resolution on a local scale | RR10 | Mean value of elevation range in metres in circles with diameter 10 cells. |
Flat (<2-degree slope) at 10 m resolution | Flat10 | Coverage |
Steep (>30-degree slope) at 10 m resolution | Steep10 | |
Distance to Steep (>30-degree slope) at 10 m resolution | DistSteep10 | Mean value |
Slope at 10 m resolution | Slope10 | |
Cliffs (>38-degree slope) at 2 m resolution | Cliff2 | Coverage |
Steep (>30-degree slope) at 2 m resolution | Steep2 | |
Flat (<2-degree slope) at 2 m resolution | Flat2 | |
Distance to Steep (>30-degree slope) at 2 m resolution | DistFlat2 | |
Vector ruggedness values at 100 m resolution | VRM2 | Mean value |
Cluster ID | Interpretation of PC1 | Interpretation of PC2 | Interpretation of PC3 | Interpretation of PC4 |
---|---|---|---|---|
1 | Calm and flat terrain | Sandstone domination | High bedrock diversity | Dominated by moraine |
2 | Calm and flat terrain | Intermixed sedimentary and eruptive | Low bedrock diversity | Dominated by moraine |
3 | Calm and flat terrain | Gneiss and granite domination | High bedrock diversity | High amount of river deposits |
4 | Rough and steep terrain | Gneiss and granite domination | High bedrock diversity | Dominated by moraine |
5 | Rough and steep terrain | Intermixed sedimentary and eruptive | Low bedrock diversity | Intermixed river deposits and moraine |
6 | Calm and flat terrain | Sandstone domination | High bedrock diversity | High amount of river deposits |
7 | Calm and flat terrain | Gneiss and granite domination | Low bedrock diversity | Intermixed river deposits and moraine |
8 | Rough and steep terrain | Gneiss and granite domination | Medium bedrock diversity | High amount of river deposits |
9 | Rough and steep terrain | Intermixed sedimentary and eruptive | Medium bedrock diversity | High amount of river deposits |
10 | Calm and flat terrain | Gneiss and granite domination | High bedrock diversity | Dominated by moraine |
11 | Rough and steep terrain | Intermixed sedimentary and eruptive | Medium bedrock diversity | Intermixed river deposits and moraine |
12 | Median steep and undulating terrain | Gneiss and granite domination | Low bedrock diversity | Dominated by moraine |
13 | Median steep and undulating terrain | Sandstone domination | Medium bedrock diversity | Intermixed river deposits and moraine |
14 | Median steep and undulating terrain | Sandstone domination | Medium bedrock diversity | Dominated by moraine |
15 | Calm and flat terrain | Sandstone domination | Low bedrock diversity | High amount of river deposits |
16 | Rough and steep terrain | Sandstone domination | Medium bedrock diversity | Intermixed river deposits and moraine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erikstad, L.; Bakkestuen, V.; Dahl, R.; Arntsen, M.L.; Margreth, A.; Angvik, T.L.; Wickström, L. Multivariate Analysis of Geological Data for Regional Studies of Geodiversity. Resources 2022, 11, 51. https://doi.org/10.3390/resources11060051
Erikstad L, Bakkestuen V, Dahl R, Arntsen ML, Margreth A, Angvik TL, Wickström L. Multivariate Analysis of Geological Data for Regional Studies of Geodiversity. Resources. 2022; 11(6):51. https://doi.org/10.3390/resources11060051
Chicago/Turabian StyleErikstad, Lars, Vegar Bakkestuen, Rolv Dahl, Mari Lie Arntsen, Annina Margreth, Tine Larsen Angvik, and Linda Wickström. 2022. "Multivariate Analysis of Geological Data for Regional Studies of Geodiversity" Resources 11, no. 6: 51. https://doi.org/10.3390/resources11060051
APA StyleErikstad, L., Bakkestuen, V., Dahl, R., Arntsen, M. L., Margreth, A., Angvik, T. L., & Wickström, L. (2022). Multivariate Analysis of Geological Data for Regional Studies of Geodiversity. Resources, 11(6), 51. https://doi.org/10.3390/resources11060051