Geotouristic Route Proposal for Touristic Development in a Mining Area—Case Study
Abstract
:1. Introduction
2. Geographical and Geological Setting
3. Materials and Methods
3.1. General Information and Fieldwork
3.2. Geosites and Geotouristic Route Assessment
3.3. SWOT Analysis Matrix
4. Results
4.1. Interest Sites Description
4.2. Proposed Geotouristic Route (GR)
4.3. Geosites Assessment
4.4. Geotouristic Route Assessment
4.5. SWOT Analysis Matrix
5. Interpretation of Results and Discussion
- -
- Execution of conditioning projects with municipal, enterprise, and academic intervention, including the participation of the inhabitants along the route that promotes tourism and improves the inhabitants’ quality of life.
- -
- Development of geological characterisation studies proposed implementing digital platforms for geotourism promotion at the local, national, and international levels.
- -
- Promote community participation in processes related to the Ruta del Oro Geopark Project, highlighting the importance of their participation in commercial and geoconservation activities within the project.
- -
- Inclusion of legal regulations and strengthening of alliances through municipal ordinances of institutional and financial cooperation. These measures are essential to ensure the operability of the geopark project.
- -
- Execute environmental recovery projects for geosites and complementary sites affected by mining contamination.
- -
- Develop training and awareness plans for integrating industrial mining development and its effects on the environment.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brilha, J.B. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2015, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.O.; Ruchkys, Ú. Quantificação e análise da geodiversidade aplicada ao geoturismo na área de proteção ambiental sul da região metropolitana de belo horizonte, minas gerais. Raega-O Espaço Geográfico Em Análise 2016, 37, 207. [Google Scholar] [CrossRef]
- Ríos-Reyes, C.A.; Jaraba, D.C.M.; Castellanos-Alarcón, O.M. Geotourism Potential and Challenges of the Coastal Region Around Santa Marta (Colombia): A Novel Strategy for Socioeconomic Development. Cuad. Geogr. Rev. Colomb. Geogr. 2021, 30, 106–124. [Google Scholar] [CrossRef]
- Gray, M. Defining Geodiversity. In Geodiversity: Valuing and Conserving Abiotic Nature; John Wiley & Sons: Chichester, UK, 2004; pp. 1–9. [Google Scholar]
- Crisp, J.R.; Ellison, J.C.; Fischer, A. Current trends and future directions in quantitative geodiversity assessment. Prog. Phys. Geogr. Earth Environ. 2020, 45, 514–540. [Google Scholar] [CrossRef]
- Ruban, D. Geodiversity as a precious national resource: A note on the role of geoparks. Resour. Policy 2017, 53, 103–108. [Google Scholar] [CrossRef]
- Carcavilla, L.; López Martínez, J.; Durán Valsero, J. Patrimonio Geológico y Geodiversidad: Investigación, Conservación, Gestión Y Relación Con Los Espacios Naturales Protegidos; IGME: Madrid, Spain, 2007. [Google Scholar]
- Erikstad, L. Geoheritage and geodiversity management—The questions for tomorrow. Proc. Geol. Assoc. 2012, 124, 713–719. [Google Scholar] [CrossRef]
- Brilha, J. Geoheritage: Inventories and evaluation. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–85. [Google Scholar]
- Gray, M. Geodiversity: The Backbone of Geoheritage and Geoconservation; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128095423. [Google Scholar]
- Jakubowski, K.J. Geological Heritage and Museums. In Proceedings of the Geological Heritage Concept, Conservation and Protection Policy in Central Europe, Cracow, Poland, 3–4 October 2003; Volume 13, pp. 21–28. [Google Scholar]
- Reis, J.; Póvoas, L.; Barriga, F.; Lopes, C.; Santos, V.F.; Ribeiro, B.; Cascalho, J.; Pinto, A. Science Education in a Museum: Enhancing Earth Sciences Literacy as a Way to Enhance Public Awareness of Geological Heritage. Geoheritage 2014, 6, 217–223. [Google Scholar] [CrossRef]
- Palacio-Prieto, J.L. Geosites, geomorphosites and geoparks: Importance, actual situation and perspectives in Mexico. Investig. Geográficas 2013, 2013, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Allan, M.; Dowling, R.; Sanders, D. The motivations for visiting geosites: The case of Crystal Cave, Western Australia. Geoj. Tour Geosites 2015, 15, 142–153. [Google Scholar]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Apolo-Masache, B.; Jaya-Montalvo, M. Research Trends in Geotourism: A Bibliometric Analysis Using the Scopus Database. Geosciences 2020, 10, 379. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Erazo, K.; Mora-Frank, C.; Carrión-Mero, P.; Berrezueta, E. Evaluation of a Paleontological Museum as Geosite and Base for Geotourism. A Case Study. Heritage 2021, 4, 1208–1227. [Google Scholar] [CrossRef]
- Prosser, C.D.; Díaz-Martínez, E.; Larwood, J.G. The Conservation of Geosites. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–212. [Google Scholar] [CrossRef]
- Forte, J.P.; Brilha, J.; Pereira, D.; Nolasco, M. Kernel Density Applied to the Quantitative Assessment of Geodiversity. Geoheritage 2018, 10, 205–217. [Google Scholar] [CrossRef] [Green Version]
- García-Cortés, Á.; Carcavilla Urquí, L.; Apoita Mugarza, B.; Arribas, A.; Bellido, F.; Barrón, E.; Delvene, G.; Díaz-Martínez, E.; Díez, A.; Durán, J.J.; et al. Documento Metodológico Para la Elaboración del Inventario Español de Lugares de Interés Geológico (IELIG). Propuesta para la Actualización Metodológica; Instituto Geológico y Minero de España: Madrid, Spain, 2013; pp. 1–64. [Google Scholar]
- Kozowski, S. Geodiversity. The concept and scope of geodiversity. Prz. Geol. 2004, 52, 833–837. [Google Scholar]
- Miljković, Ð.; Božić, S.; Miljković, L.; Marković, S.B.; Lukić, T.; Jovanović, M.; Bjelajac, D.; Vasiljević, Đ.A.; Vujičić, M.D.; Ristanović, B. Geosite Assessment Using Three Different Methods; a Comparative Study of the Krupaja and the Žagubica Springs—Hydrological Heritage of Serbia. Open Geosci. 2018, 10, 192–208. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Umaña, D. State of the Art of Geodiversity, Geoconservation, and Geotourism in Costa Rica. Geosciences 2020, 10, 211. [Google Scholar] [CrossRef]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing scientific and additional values of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Serrano, E.; Ruiz-Flaño, P. Geodiversity: A theoretical and applied concept. Geogr. Helv. 2007, 62, 140–147. [Google Scholar] [CrossRef]
- Vujičić, M.D.; Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Lukić, T.; Hadžić, O.; Janićević, S. Preliminary geosite assessment model (GAM) and its application on Fruška gora mountain, potential geotourism destination of Serbia. Acta Geogr. Slov. 2011, 51, 361–376. [Google Scholar] [CrossRef]
- Bollati, I.; Lenz, B.C.; Zanoletti, E.; Pelfini, M. Geomorphological mapping for the valorization of the alpine environment. A methodological proposal tested in the Loana Valley (Sesia Val Grande Geopark, Western Italian Alps). J. Mt. Sci. 2017, 14, 1023–1038. [Google Scholar] [CrossRef]
- Larwood, J.; Prosser, C. Geotourism, Conservation and Society Earth heritage conservation in the UK—Its status Conservation and geotourism—Some examples from the UK. Geol. Balc. 1998, 28, 97–100. [Google Scholar]
- Newsome, D.; Dowling, R.K. Setting an agenda for geotourism. In Geotourism: The Tourism of Geology and Landscape; Newsome, D., Dowling, R.K., Eds.; Goodfellow Publishers Limited: Oxford, UK, 2010; pp. 1–12. [Google Scholar]
- Hose, T.A.; Vasiljević, D.A. Defining the Nature and Purpose of Modern Geotourism with Particular Reference to the United Kingdom and South-East Europe. Geoheritage 2012, 4, 25–43. [Google Scholar] [CrossRef]
- Dowling, R.K. Global Geotourism—An Emerging Form of Sustainable Tourism. Czech J. Tour. 2014, 2, 59–79. [Google Scholar] [CrossRef] [Green Version]
- Hose, T. Geoheritage and Geotourism: A European Perspective; Boydell & Brewer: Woodbridge, UK, 2016. [Google Scholar]
- Hose, T. European geotourism–geological interpretation and geoconservation promotion for tourists. In Geological Heritage: Its Conservation and Management; Barettino, D., Wimbledon, W.A.P., Gallego, E., Eds.; Instituto Tecnologico Geominero de Espana: Madrid, Spain, 2000; pp. 127–146. [Google Scholar]
- Słomka, T.; Kicińska-Świderska, A. The basic concepts of geotourism. Geoturystyka/Geotourism 2004, 1, 5–7. [Google Scholar]
- Joyce, E.B. Geological heritage of Australia: Selecting the best for Geosites and World Heritage, and telling the story for geotourism and Geoparks. ASEG Ext. Abstr. 2006, 2006, 1–4. [Google Scholar] [CrossRef]
- Newsome, D.; Dowling, R.K. The future of geotourism where to from here. In Geotourism: The Tourism of Geology and Landscape; Newsome, D., Dowling, R.K., Eds.; Goodfellow Publishers Limited: Wallingford, UK, 2010. [Google Scholar]
- Hose, T.A. The English Origins of Geotourism (as a Vehicle for Geoconservation) and Their Relevance to Current Studies. Acta Geogr. Slov. 2011, 51, 343–359. [Google Scholar] [CrossRef] [Green Version]
- Newsome, D.; Dowling, R. Geoheritage and Geotourism. In Geoheritage: Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 305–321. [Google Scholar]
- Kubalíková, L. Assessing Geotourism Resources on a Local Level: A Case Study from Southern Moravia (Czech Republic). Resources 2019, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Martini, G.; Alcalá, L.; Brilha, J.; Iantria, L.; Sá, A.A.; Tourtellot, J. Reflections about the geotourism concept. In Proceedings of the 11th European Geoparks Conference, Arouca Geopark, Portugal, 19–21 September 2012; Sá, A.A., Rocha, D., Paz, A., Correia, V., Eds.; 2012; pp. 187–188. [Google Scholar]
- Herrera-Franco, G.; Carrión-Mero, P.; Alvarado, N.; Morante-Carballo, F.; Maldonado, A.; Caldevilla, P.; Briones-Bitar, J.; Berrezueta, E. Geosites and Georesources to Foster Geotourism in Communities: Case Study of the Santa Elena Peninsula Geopark Project in Ecuador. Sustainability 2020, 12, 4484. [Google Scholar] [CrossRef]
- Herrera, G.; Carrión, P.; Briones, J. Geotourism potential in the context of the geopark project for the development of santa elena province, ecuador. WIT Trans. Ecol. Environ. 2018, 217, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Castanera, D.; Pascual, C.; Canudo, J.I.; Barco, J.L. Bringing Together Research, Geoconservation and Reaching a Broad Public in the Form of a Geotourism Project: The Ichnite Route of Soria (Spain). Geoheritage 2017, 10, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Carrión-Mero, P.; Loor-Oporto, O.; Andrade-Ríos, H.; Herrera-Franco, G.; Morante-Carballo, F.; Jaya-Montalvo, M.; Aguilar-Aguilar, M.; Torres-Peña, K.; Berrezueta, E. Quantitative and Qualitative Assessment of the “El Sexmo” Tourist Gold Mine (Zaruma, Ecuador) as A Geosite and Mining Site. Resources 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Mata-Perelló, J.; Carrión, P.; Molina, J.; Villas-Boas, R. Geomining Heritage as a Tool to Promote the Social Development of Rural Communities. In GeoheritageIn Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 167–177. ISBN 9780128095423. [Google Scholar] [CrossRef]
- Franco, G.H.; Mero, P.C.; Carballo, F.M.; Narváez, G.H.; Bitar, J.B.; Torrens, R.B. Strategies for the development of the value of the mining-industrial heritage of the Zaruma-Portovelo, ecuador, in the context of a geopark project. Int. J. Energy Prod. Manag. 2020, 5, 48–59. [Google Scholar] [CrossRef]
- Mero, P.C.; Franco, G.H.; Briones, J.; Caldevilla, P.; Domínguez, P.C.; Berrezueta, E. Geotourism and Local Development Based on Geological and Mining Sites Utilization, Zaruma-Portovelo, Ecuador. Geosciences 2018, 8, 205. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Herrera-Narváez, G.; Herrera-Franco, G.; Sánchez-Zambrano, E.; Mata-Perelló, J.; Berrezueta, E. Assessment and Promotion of Geotouristic and Geomining Routes as a Basis for Local Development: A Case Study. Minerals 2021, 11, 351. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Serrano, L.; González, L.S.; Dabrio, C.J.; Legoinha, P. Sustainable geotourism using digital technologies along a rural georoute in Monsagro (Salamanca, Spain). Int. J. Digit. Earth 2016, 10, 121–138. [Google Scholar] [CrossRef]
- Figueroa-Sterquel, R.; Negrete-Sepúlveda, J.; Silva-Marambio, A.; Cosio, F. New Routes of Geotourism for the La Campana–Peñuelas Biosphere Reserve, Chile. In Global Geographical Heritage, Geoparks and Geotourism. Advances in Geographical and Environmental Sciences; Springer: Singapore, 2021; pp. 285–306. [Google Scholar]
- Arenas-Martija, A.; Orrego-Araya, J.; Ortiz-Pavéz, C.; Gajardo-Tapia, C.; Zanetta-Colombo, N.; Inzunza-López, K.; Cisternas-Silva, N.; Córdova-Veas, C.; Goehler-Marchant, A.M.; Báez-Córdova, N.; et al. Collaborative Creation of Educational Geo Routes: A Strategy for Teaching and Learning Sciences and Geography, Puchuncaví, Chile. In Global Geographical Heritage, Geoparks and Geotourism. Advances in Geographical and Environmental Sciences; Springer: Singapore, 2021; pp. 449–483. [Google Scholar]
- Lazzari, M.; Grano, M. Geo-milltour: Innovative geo-touristic routes along the historic watermills in Basilicata (Southern Italy). In Proceedings of the International Conference on Geotourism, Mining Tourism, Sustainable Development, and Environmental Protection, Firenze, Italy, 18–20 October 2016; Ugolini, F., Marchi, V., Trampetti, S., Pearmutter, D., Raschi, A., Eds.; IBIMET-CNR: Florence, Italy, 2016; pp. 84–89. [Google Scholar]
- Del Lama, E.A.; de La Corte Bacci, D.; Martins, L.; da Glória Motta Garcia, M.; Dehira, L.K. Urban Geotourism and the Old Centre of São Paulo City, Brazil. Geoheritage 2015, 7, 147–164. [Google Scholar] [CrossRef]
- Pereira, M.B.; Ferreira, A.C.; Rocha, L.C. Trilha interpretativa geoturística na Serra de São José no entorno da estrada real/MG. Anu. Do Inst. Geociencias 2012, 35, 165–172. [Google Scholar] [CrossRef]
- Carrion-Mero, P. Proyecto Rumys: Cooperación y Sostenibilidad. In La Plata en Iberoamérica, Siglos XVI al XIX: Congreso Internacional; Universidad de León: León, Spain, 2008; pp. 687–700. [Google Scholar]
- González-Martínez, A.; Carvajal Gómez, D.J. Pasivos ambientales mineros y su valorización como recurso patrimonial. Ejemplo de actuaciones en la Comarca de Tharsis (Faja Pirítica Ibérica). In Taller Sostenibilidad; CETEM: Río de Janeiro, Brazil, 2013; pp. 5–29. [Google Scholar]
- Pires, M. A “Estrada Real” e a história do processo de construção de roteiros turísticos no estado de Minas Gerais. Rev. Sobre Tur. Y Desarro. Local Sosten. 2017, 10, 1–10. [Google Scholar]
- Sánchez-Cortez, J.L. Conservation of geoheritage in Ecuador: Situation and perspectives. Int. J. Geoheritage Park. 2019, 7, 91–101. [Google Scholar] [CrossRef]
- Berrezueta, E.; Sánchez-Cortez, J.L.; Aguilar-Aguilar, M. Inventory and Characterization of Geosites in Ecuador: A Review. Geoheritage 2021, 13, 1–17. [Google Scholar] [CrossRef]
- Berrezueta, E.; Ordóñez-Casado, B.; Bonilla, W.; Banda, R.; Castroviejo, R.; Carrión, P.; Puglla, S. Ore Petrography Using Optical Image Analysis: Application to Zaruma-Portovelo Deposit (Ecuador). Geosciences 2016, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Berrezueta, E.; Domínguez-Cuesta, M.; Carrión, P.; Berrezueta, T.; Herrero, G. Propuesta metodológica para el aprovechamiento del patrimonio geológico minero de la zona Zaruma-Portovelo (Ecuador). Trab. Geol. 2006, 26, 103–109. [Google Scholar]
- Ayala, D.; Delgado, J.; López, F.; Boski, T.; Calderón, E. Preliminary evaluation of a passive treatment for mine tailings in Portovelo, El Oro, Ecuador. In Proceedings of the 27th International Applied Geochemistry Symposium, Tucson, AZ, USA, 20–24 April 2015; pp. 1–12. [Google Scholar]
- Rodríguez, J.D.; Brioso, C.B.; Boski, T. Caracterización de residuos mineros y diseño preliminar de un sistema de acopio controlado en el distrito minero de Zaruma-Portovelo (SE Ecuador). Geogaceta 2018, 64, 135–138. [Google Scholar]
- Marshall, B.G.; Veiga, M.M.; Da Silva, H.A.M.; Guimarães, J.R.D. Cyanide Contamination of the Puyango-Tumbes River Caused by Artisanal Gold Mining in Portovelo-Zaruma, Ecuador. Curr. Environ. Health Rep. 2020, 7, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Turner-Carrión, M.; Carrión-Mero, P.; Turner-Salamea, I.; Morante-Carballo, F.; Aguilar-Aguilar, M.; Zambrano-Ruiz, K.; Berrezueta, E. A Mineralogical Museum as a Geotourism Attraction: A Case Study. Minerals 2021, 11, 582. [Google Scholar] [CrossRef]
- Zarroca, M.; Linares, R.; Velásquez-López, P.C.; Roqué, C.; Rodríguez, R. Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and small-scale gold mining in Zaruma-Portovelo, Ecuador. J. Appl. Geophys. 2015, 113, 103–113. [Google Scholar] [CrossRef]
- Oliva, A.; Ruíz, A.; Gallardo, R. Terrain instability in areas of mining activity: Cse Zaruma city. Ecuador. Rev. Redes Ing. 2017, 8, 69–81. [Google Scholar]
- Calle, J. Geología regional de Zaruma-Portovelo y consideraciones ambientales del sector. In El Patrimonio Geominero en el Contexto de la Ordenación del Territorio; Martins, L., Carrión, P., Eds.; ESPOL: Guayaquil, Ecuador, 2005; pp. 307–320. ISBN 9978-44-615-. [Google Scholar]
- Sauer, W. Geología del Ecuador; Editorial Talleres Gráficos del Ministerio de Educación: Quito, Ecuador, 1965. [Google Scholar]
- González-Carrasco, V.; Velasquez-Lopez, P.C.; Olivero-Verbel, J.; Pájaro-Castro, N. Air Mercury Contamination in the Gold Mining Town of Portovelo, Ecuador. Bull. Environ. Contam. Toxicol. 2011, 87, 250–253. [Google Scholar] [CrossRef]
- Jácome, M.C.; Martinez-Graña, A.M.; Valdés, V. Detection of Terrain Deformations Using InSAR Techniques in Relation to Results on Terrain Subsidence (Ciudad de Zaruma, Ecuador). Remote Sens. 2020, 12, 1598. [Google Scholar] [CrossRef]
- Schütte, P.; Chiaradia, M.; Barra, F.; Villagómez, D.; Beate, B. Metallogenic features of Miocene porphyry Cu and porphyry-related mineral deposits in Ecuador revealed by Re-Os, 40Ar/39Ar, and U-Pb geochronology. Miner. Deposita 2011, 47, 383–410. [Google Scholar] [CrossRef] [Green Version]
- PRODEMINCA. Depósitos porfídicos y epi-mesotermales relacionados con intrusiones de las Cordilleras Occidental y Real. Evaluación Dist. Min. Del Ecuad. 2000, 4, 36–55. [Google Scholar]
- PRODEMINCA. Depósitos epitermales en la Cordillera Andina. In Evaluación de Distritos Mineros del Ecuador; UCP PRODEMINCA Proyecto MEM BIRF: Quito, Ecuador, 2000; Volume 2, pp. 36–55. [Google Scholar]
- Schütte, P.; Chiaradia, M.; Beate, B. Petrogenetic Evolution of Arc Magmatism Associated with Late Oligocene to Late Miocene Porphyry-Related Ore Deposits in Ecuador. Econ. Geol. 2010, 105, 1243–1270. [Google Scholar] [CrossRef]
- Aspden, J.A.; Bonilla, W.; Duque, P. The El Oro Metamorphic Complex, Ecuador: Geology and Economic Mineral Deposits; British Geological Survey: Nottingham, UK, 1995; Volume 67, p. 63. [Google Scholar]
- Riel, N.; Martelat, J.-E.; Guillot, S.; Jaillard, E.; Monié, P.; Yuquilema, J.; Duclaux, G.; Mercier, J. Fore arc tectonothermal evolution of the El Oro metamorphic province (Ecuador) during the Mesozoic. Tectonics 2014, 33, 1989–2012. [Google Scholar] [CrossRef]
- Van Thournout, F.; Salemink, J.; Valenzuela, G.; Merlyn, M.; Boven, A.; Muchez, P. Portovelo: A volcanic-hosted epithermal vein-system in Ecuador, South America. Miner. Depos. 1996, 31, 269–276. [Google Scholar] [CrossRef]
- Berrezueta, E.; Ordóñez-Casado, B.; Espinoza-Santos, C.; Loayza-Ramírez, J.; Carrión-Mero, P.; Morante-Carvallo, F.; Bonilla, W. Caracterización mineralógica y petrográfica de las vetas Vizcaya, Octubrina y Gabi del yacimiento aurífero epitermal Zaruma-Portovelo, Ecuador. Boletín Geológico y Min. 2021, 132, 421–437. [Google Scholar] [CrossRef]
- Paladines, A.P.; Rosero, G. Zonificación Mineralogénica del Ecuador; Laser Editores S.A.: Quito, Ecuador, 1996. [Google Scholar]
- Vikentyev, I.; Banda, R.; Tsepin, A.; Prokofiev, V.; Vikentyeva, O. Mineralogy and formation conditions of Portovelo-Zaruma gold-sulphide vein deposit, Ecuador. Geochemistry. Mineral. Petrol. 2005, 43, 148–154. [Google Scholar]
- Schutzmeier, P.; Berger, U.; Bose-O’Reilly, S. Gold Mining in Ecuador: A Cross-Sectional Assessment of Mercury in Urine and Medical Symptoms in Miners from Portovelo/Zaruma. Int. J. Environ. Res. Public Health 2016, 14, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Instituto Nacional de Estadística y Censos (INEC) Población Demográfica. Available online: https://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/ (accessed on 12 April 2021).
- Velásquez-López, P.C.; Veiga, M.M.; Hall, K. Mercury balance in amalgamation in artisanal and small-scale gold mining: Identifying strategies for reducing environmental pollution in Portovelo-Zaruma, Ecuador. J. Clean. Prod. 2010, 18, 226–232. [Google Scholar] [CrossRef]
- Dyson, R.G. Strategic development and SWOT analysis at the University of Warwick. Eur. J. Oper. Res. 2004, 152, 631–640. [Google Scholar] [CrossRef]
- Valente, E.; Casaburi, A.; Finizio, M.; Papaleo, L.; Sorrentino, A.; Santangelo, N. Defining the Geotourism Potential of the CILENTO, Vallo di Diano and Alburni UNESCO Global Geopark (Southern Italy). Geosciences 2021, 11, 466. [Google Scholar] [CrossRef]
- Štrba, Ľ.; Kršák, B.; Sidor, C. Some Comments to Geosite Assessment, Visitors, and Geotourism Sustainability. Sustainability 2018, 10, 2589. [Google Scholar] [CrossRef] [Green Version]
- De Grys, A.; Vera, J.; Goossens, P. A note on the hot springs of Ecuador. Geothermics 1970, 2, 1400–1404. [Google Scholar] [CrossRef]
- Carrera-Villacrés, D.V.; Hidalgo-Hidalgo, A.; Guevara-García, P.; Vivero-Balarezo, M.; Delgado-Rodríguez, V. Hydrogeochemistry Characterization of Hot Springs Located in The Andes of Ecuador. IOP Conf. Series Earth Environ. Sci. 2016, 44, 022027. [Google Scholar] [CrossRef] [Green Version]
- Aguilar Zhingüe, J.D. Plan Estratégico Para el Desarrollo del Turimo Sostenible en el Cantón Portovelo, Provincia de El Oro 2015–2020; GAD Municipal de Portovelo: Portovelo, Ecuador, 2016. [Google Scholar]
- González, I. Ruta Turística Cultural del Cantón Portovelo de La Provincia de El Oro; Universidad Nacional de Loja: Loja, Ecuador, 2016. [Google Scholar]
- Toledo Vivanco, D.A.; Calle Iñiguez, M.P. Análisis del Potencial Turístico del Cantón Portovelo, Provincia de el Oro, Ecuador; Universidad Técnica de Machala: El Oro, Ecuador, 2019. [Google Scholar]
- Bonilla, W. Metalogenia del distrito minero Zaruma-Portovelo, República del Ecuador. Ph.D. Thesis, Universidad de Buenos Aires, Buenos Aires, Argentina, 2009. [Google Scholar]
- ARCOM. Proyecto de Seguimiento, Control y Evaluación de Labores Mineras en el Distrito Zaruma-Portovelo; Agencia de Regulación y Control Minero (ARCOM): El Oro, Ecuador, 2019; p. 46. [Google Scholar]
- Cagua Corozo, K.L.; Illicachi Maldonado, K.Y. Ruta Turística Sostenible del Patrimonio Minero con la Finalidad de Aumentar el Turismo en la Parroquia Urbana Portovelo; Universidad Técnica de Machala: El Oro, Ecuador, 2020; pp. 1–100. [Google Scholar]
- GAD. Municipal de Portovelo Gobierno Autónomo Descentralizado Municipal del Cantón Aguarico. Plan Desarro. Ordenamiento Territ. 2020, 2019–2023, 157. [Google Scholar]
- Pereira, P.; Pereira, D. Methodological guidelines for geomorphosite assessment. Géomorphologie Reli. Process. Environ. 2010, 16, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Pereira, D.; Caetano Alves, M.I. Geomorphosite assessment in Montesinho Natural Park (Portugal). Geogr. Helv. 2007, 62, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Villafuerte, I.; Barrazueta, A.; Corral, C. Desarrollo Turístico de la Ruta del Oro y su Área de Influencia en los Cantones Zaruma y Portovelo. Bachelor’s Thesis, Escuela Superior Polotécnica del Litoral (ESPOL), Guayaquil, Ecuador, 2009. [Google Scholar]
- Carrión, P.; Ramos, V.; Ladines, L.; Loayza, G.; Domínguez, M.; Berrezueta, E. La Ruta del Oro y el patrimonio geológico-minero en Zaruma-Portovelo (Ecuador). In Proceedings of the IV International Congress on Geological and Mining Heritage in Utrillas, Teruel, Spain, 25–28 September 2013; pp. 333–346. [Google Scholar]
- Banda, R.; Vikent’ev, I.V.; Nosik, L.P. Sulfur isotope composition of the Vizcaya and Nicol veins of Portovelo-Zaruma deposit (Ecuador). Dokl. Akad. Nauk 2005, 405, 783–787. [Google Scholar]
- Spencer, R.M.; Montenegro, J.L.; Gaibor, A.; Perez, E.P.; Mantilla, G.; Viera, F.; Spencer, C.E. The Portovelo-Zaruma mining camp, SW Ecuador: Porphyry and epithermal environments. SEG Newsl. 2002, 49, 8–14. [Google Scholar]
- Tutivén, J. Determinación de las Asociaciones Minerales con Contenido de Oro en la Veta Hidrotermal del Distrito Minero Zaruma-Portovelo. Bachelor Thesis, Universidad de Guayaquil, Guayaquil, Ecuador, 2014. [Google Scholar]
- Skibiński, J.; Kultys, K.; Baran-Zgłobicka, B.; Zgłobicki, W. Geoparks in SE Poland as Areas of Tourism Development: Current State and Future Prospects. Resources 2021, 10, 113. [Google Scholar] [CrossRef]
- Rivas, V.; Rix, K.; Frances, E.; Cendrero, A.; Brunsden, D. Geomorphological indicators for environmental impact assessment: Consumable and non-consumable geomorphological resources. Geomorphology 1997, 18, 169–182. [Google Scholar] [CrossRef]
- Mikhailenko, A.; Ruban, D.; Ermolaev, V. Accessibility of Geoheritage Sites—A Methodological Proposal. Heritage 2021, 4, 1080–1091. [Google Scholar] [CrossRef]
- Henriques, M.H.; dos Reis, R.P.; Brilha, J.; Mota, T. Geoconservation as an Emerging Geoscience. Geoheritage 2011, 3, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation; can we measure intangible values? Alp. Mediterr. Quat. 2005, 18, 293–306. [Google Scholar]
- Dowling, R.K. Geotourism’s Global Growth. Geoheritage 2011, 3, 1–13. [Google Scholar] [CrossRef]
- Hose, T.A.; Marković, S.B.; Komac, B.; Zorn, M. Geotourism—A short introduction. Acta Geogr. Slov. 2011, 51, 339–342. [Google Scholar] [CrossRef] [Green Version]
Indicators/Sub-Indicators | Values | Weight | ||
---|---|---|---|---|
Scientific Value (SV) | ||||
Representativeness | 1–4 | 30 | ||
Key locality | 20 | |||
Scientific knowledge | 5 | |||
Integrity | 15 | |||
Geological diversity | 5 | |||
Rarity | 15 | |||
Use limitations | 10 | |||
(SV) Total | 100 | |||
Potential Educational Use (PEU) and Potential Tourism Use (PTU) | Values | Weight | ||
PEU | PTU | PEU | PTU | |
Vulnerability | 1–4 | 10 | 10 | |
Accessibility | 10 | 10 | ||
Use limitations | 5 | 5 | ||
Safety | 10 | 10 | ||
Logistics | 5 | 5 | ||
Density of population | 5 | 5 | ||
Association with other values | 5 | 5 | ||
Scenary | 5 | 15 | ||
Uniqueness | 5 | 10 | ||
Observation conditions | 10 | 5 | ||
Didactic potential | Interpretative potential | 20 | 10 | |
Geological diversity | Economic level | 10 | 5 | |
Proximity of recreational areas | 5 | |||
Total | 100 | 100 | ||
Degradation Risk (DR) | Values | Weight | ||
Deterioration of geological elements | 1–4 | 35 | ||
Proximity to areas/activities with potential to cause degradation | 20 | |||
Legal protection | 20 | |||
Accessibility | 15 | |||
Density of population | 10 | |||
Total | 100 |
Qualitative Parameters | Value Range | Elements to Consider (Minimum and Maximum Values) |
---|---|---|
Accessibility | 1–5 | Main roads (0–2) Parking spaces (0–2) Access by other types of transport (bicycle path, rail) (0–1) |
Preparation and logistics | Presence of signage (0–1) Trained tourist guides (0–1) Basic services (hotels, restaurants) (0–3) | |
Registration with the Ministry of Tourism | Tourist registration application entry (0–1) Accommodation economic activities requirements (0–1) Recreation fun and recreation (0–3) | |
Regarding heritage | Presence of human and cultural values of a particular historic period (0–2) Presence of natural habitats (0–3) | |
Contribution to scientific knowledge | Research studies in the area (scientific articles) (0–1) Promotes knowledge in science (0–2) Promotes the implementation of research proposals (theme parks, museums, sites, geopark, geotourism) (0–2) | |
Ecotourism | Environmental awareness campaigns (0–1) Activities that reduce the environmental impact (0–3) Signage and information about environmental care at the sites (0–1) |
N° | Potential Site | Type | Main Characteristics |
---|---|---|---|
10 | “Aguas calientes” nature spring | Geosite | Aguas Calientes is a hot spring on the Río Amarillo with a geology corresponding to Cretaceous sediments, without active volcanism, and mineralisations of Au, Ag, Cu, Pb, Zn, and As [87]. The water temperature is 50 °C, pH 7.1, and the presence of elements, such as Na, K, Ca, Mg, Cl, and SiO4 in considerable quantities [87,88]. There is also the presence of elements on a smaller scale, such as Li, B, As, Cu, Pb, and Zn [87]. |
8 | Jesús Ángel waterfall | Geosite | The waterfall is approximately 2 m high, and with temperatures of 17–20 °C, it has two falls, which descend through steep rocks to form a lagoon at a later time. It maintains vegetation, such as large bushes and rocks [89]. This site has good accessibility, located less than 100 m from a paved road. |
2 | Museo Mineralógico Magner Turner | Geoheritage element | The museum consists of 14 different sections/areas that exhibit collections of national and international minerals, fossils and rocks, and pieces, photos, objects, and old equipment that reflect the mining activity of the district. It reaches a total of 7000 samples and the operation of three mines in situ that allow for the tourists to understand the activities of artisanal mining extraction. It is located in the Campamento Americano neighbourhood, located at 700 m a.s.l. [64,89,90,91]. |
6 | San José hill | Geosite Viewpoint geosite | The San José hill in the study area is a hill characterised by not presenting mineralisation. Its lithology corresponds to the Faique Series consisting mainly of volcanic breccias, tuffs, and lava flows of andesitic composition and ignimbrites [92]. The hill is characterised as the main viewpoint of the urban area with unique morphological characteristics. Its approximate height is 600 m, with steep slopes reaching 70°. The morphology is typical of the characteristics of the rock that compose it and the alteration and erosion processes to which it is subjected to the present day. |
1 | Confluence of the Calera River and Amarillo River | Tourist interest site | In this union, a small valley is formed that extends in a North–South direction, from the river bank the extension exceeds 80 m, within this valley, small terraces formed by alluvial material can be seen where plants have been installed for the extraction of minerals, such as gold found within this water resource [93]. The Calera River is characteristic of installing this type of infrastructure for mineral processing, recognising it as an industrial mining zone. |
9 | La Chorrera tourist viewpoint | Tourist interest site | Created in the 20th century to enhance the “Río Amarillo” hydroelectric plant, it is currently a heritage of the canton, used by tourists as a viewpoint and point of reference for activities, such as fishing. Moreover, within the area and its surroundings, it is the only tourist destination of this type that presents an installation of lights (which are visible at night), drawing the attention of tourists who visit the place [94]. |
7 | Vestigios de la minera SADCO | Tourist interest site | It is a site that belonged to the South American Development Company (SADCO). The company arrived in Portovelo with the best technology to carry out the extraction of gold. It created a mining camp, where facilities that had large cyanidation tanks can currently be seen. A reconstructed castle was implemented to obtain the extracted material from the mines [94]. |
4 | Conjunto de casas patrimoniales | Tourist interest site | Around 40 heritage houses are estimated in the canton where the American and National neighbourhoods were built. The infrastructures present European art from the time of the conquest and colonisation. The exteriors of these houses have been carved in guayacan and cedarwood [46]. |
5 | Estadio de oro | Tourist interest site | Estadio de la Liga Deportiva Cantonal de Portovelo, which is multipurpose, opened in 1955 to approximately 3500 people. Its potential tourist interest lies in the stories of the place, which classify it as a stadium located in an area rich in precious metals that have not been exploited to date [95]. |
3 | Escultura en honor al minero | Tourist interest site | It is a monument representing all of the artisanal miners, made with fibreglass and stone. The site presents three characters with an average height of 3 m, traditional clothing, and their work tools [46]. |
Internal Environment | Strengths | Weaknesses | |
External Environment |
|
| |
Opportunities | Strategies: Strengths + Opportunities | Strategies: Weaknesses + Opportunities | |
| 1.a.d. Strengthen tourism associated with geological importance through the Ruta de El Oro Geopark Project. 1.a.c. Rescue mining vestiges through cooperation alliances. 2.a.b.e. Establish tour guides with knowledge of the area. 4.6.d. Implement environmental awareness campaigns focused on conserving the wealth of flora, fauna, and relevant geological features. 5.d.f. Develop tourism promotion campaigns for the GR at a national and international level. 6.a.b. Design complementary tourist activities close to the route that strengthen the services offered to tourists. | 1.a.d. Execution of geosite conditioning projects with community and business participation. 2.c. Generate recovery processes for the Calera River. 3.c.d. Design a conditioning and preservation plan for deteriorating historical and mining interest sites. 4.c.e. Promote inter-institutional and business cooperation to attract financing funds to prepare geosites. 5.a.d. Implement digital tourism dissemination systems with a national and international scope. 6.a.f. Execute geological characterisation studies of the main geosites in the area to strengthen their outreach and tourist affluence. | |
Threats | Strategies: Strengths-Threats | Strategies: Weaknesses-Threats | |
| 1.a. Generate mining environmental impact assessment studies in geosites and tourist interest sites. 1.b.c. Strengthen the legislative system related to water pollution due to mining activity. 6.c.d. Promote the execution of scientific studies that give added value to the importance of flora and fauna in rivers. | 1.a. Implement interpretation and conservation panels in the sites of the geotouristic route that reduce the degradation risk by tourists. 2.b. Carry out scientific studies focused on pollution mitigation strategies due to mining activity. 3.a.d. Create tourist parks through the conditioning of historical and mining interest sites. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión-Mero, P.; Turner-Carrión, M.; Herrera-Franco, G.; Bravo-Murillo, G.; Aguilar-Aguilar, M.; Paz-Salas, N.; Berrezueta, E. Geotouristic Route Proposal for Touristic Development in a Mining Area—Case Study. Resources 2022, 11, 25. https://doi.org/10.3390/resources11030025
Carrión-Mero P, Turner-Carrión M, Herrera-Franco G, Bravo-Murillo G, Aguilar-Aguilar M, Paz-Salas N, Berrezueta E. Geotouristic Route Proposal for Touristic Development in a Mining Area—Case Study. Resources. 2022; 11(3):25. https://doi.org/10.3390/resources11030025
Chicago/Turabian StyleCarrión-Mero, Paúl, Magner Turner-Carrión, Gricelda Herrera-Franco, Gianella Bravo-Murillo, Maribel Aguilar-Aguilar, Nataly Paz-Salas, and Edgar Berrezueta. 2022. "Geotouristic Route Proposal for Touristic Development in a Mining Area—Case Study" Resources 11, no. 3: 25. https://doi.org/10.3390/resources11030025
APA StyleCarrión-Mero, P., Turner-Carrión, M., Herrera-Franco, G., Bravo-Murillo, G., Aguilar-Aguilar, M., Paz-Salas, N., & Berrezueta, E. (2022). Geotouristic Route Proposal for Touristic Development in a Mining Area—Case Study. Resources, 11(3), 25. https://doi.org/10.3390/resources11030025