Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees (Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater
Abstract
:1. Introduction
1.1. Pressure on Global Freshwater Resources
1.2. Application of Urban Treated Wastewater
1.3. Application of Water Footprint Assessment for Rational Irrigation
1.4. Olive Cultivation
1.5. Table Olives
1.6. Scope of the Experiment
2. Materials and Methods
2.1. Experimental SITE
2.2. Plant Material, Experimental Conditions, Treatments
- Irrigation with municipal treated wastewater and application of full quantity of fertilizer (TWW);
- Irrigation with municipal treated wastewater and application of half quantity of fertilizer (TWW1/2F);
- Irrigation with fresh (tap) water and application of full quantity of fertilizer (TaW);
- Irrigation with 75% quantity of tap water and application of full quantity of fertilizer (TaW75%); and
- Irrigation with fresh (tap) water, with 10% zeolite substrate (v/v) and application of full quantity of fertilizer (Zeolite). Zeolites are hydrated alluminosilicates, which, due to their structure, have high adsorption capacity. In agriculture, they are applied on the soil, improving its physical, chemical, and biological properties. They have been highly recommended for soil application during the last years due to their ability to store water and also capture, store, and slowly release nutrients to soil solution [27].
2.3. Water Resources
2.4. Water Needs and Irrigation Schedule
2.5. Plant Development (Height, Number of Leaves and Stem Diameter, Biomass, and Leaf Area)
2.6. Total Chlorophyll and Carotenoids Content
2.7. Proline Content
2.8. Total Phenolic Content
2.9. Statistical Analysis
2.10. Water Footprint Computation
2.11. Local Nursery of ‘Konservolea’ Nursery Plants Water Footprint Computation
3. Results and Discussion
3.1. Plant Development and Physiological Status
3.2. Stress Indicators
3.3. Water Footprint
3.4. Local Nursery Water Footprint
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Water Use and Stress. Available online: Ourworldindata.org/water-use-stress (accessed on 31 January 2022).
- FAO. AQUASTAT Core Database. Available online: https://www.fao.org/aquastat/statistics/query/index.html?lang=en (accessed on 31 January 2022).
- Angelakis, A.N.; Asano, T.; Bahri, A.; Jimenez, B.E.; Tchobanoglous, G. Water reuse: From ancient to modern times and the future. Front. Environ. Sci. 2018, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Singh, A. A review of wastewater irrigation: Environmental implications. Resour. Conserv. Recycl. 2021, 168, 105454. [Google Scholar] [CrossRef]
- Olivieri, A.W.; Pecson, B.; Crook, J.; Hultquist, R. California water reuse—Past, present and future perspectives. Adv. Chem. Pollution, Environ. Manag. Prot. 2020, 5, 65–111. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.S.; Qi, X. Bin Treated wastewater irrigation—A review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; El-Hendawy, S.; Abdella, K.; Alotaibi, M.; Alderfasi, A. Impacts of long-and short-term of irrigation with treated wastewater and synthetic fertilizers on the growth, biomass, heavy metal content, and energy traits of three potential bioenergy crops in arid regions. Energies 2021, 14, 3037. [Google Scholar] [CrossRef]
- Vergine, P.; Salerno, C.; Libutti, A.; Beneduce, L.; Gatta, G.; Berardi, G.; Pollice, A. Closing the water cycle in the agro-industrial sector by reusing treated wastewater for irrigation. J. Clean. Prod. 2017, 164, 587–596. [Google Scholar] [CrossRef]
- Shtull-Trauring, E.; Cohen, A.; Ben-Hur, M.; Israeli, M.; Bernstein, N. NPK in treated wastewater irrigation: Regional scale indices to minimize environmental pollution and optimize crop nutritional supply. Sci. Total Environ. 2022, 806, 150387. [Google Scholar] [CrossRef]
- Bedbabis, S.; Rouina, B.B.; Boukhris, M.; Ferrara, G. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate. J. Environ. Manage. 2014, 133, 45–50. [Google Scholar] [CrossRef]
- Farhadkhani, M.; Nikaeen, M.; Yadegarfar, G.; Hatamzadeh, M.; Pourmohammadbagher, H.; Sahbaei, Z.; Rahmani, H.R. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res. 2018, 144, 356–364. [Google Scholar] [CrossRef]
- Dang, Q.; Tan, W.; Zhao, X.; Li, D.; Li, Y.; Yang, T.; Li, R.; Zu, G.; Xi, B. Linking the response of soil microbial community structure in soils to long-term wastewater irrigation and soil depth. Sci. Total Environ. 2019, 688, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedbabis, S.; Ben Rouina, B.; Boukhris, M.; Ferrara, G. Effects of irrigation with treated wastewater on root and fruit mineral elements of Chemlali olive cultivar. Sci. World J. 2014, 2014, 973638. [Google Scholar] [CrossRef] [PubMed]
- Tunc, T.; Sahin, U. The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters. Agric. Water Manag. 2015, 158, 213–224. [Google Scholar] [CrossRef]
- Elfanssi, S.; Ouazzani, N.; Mandi, L. Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater. Agric. Water Manag. 2018, 202, 231–240. [Google Scholar] [CrossRef]
- Giannoccaro, G.; Arborea, S.; de Gennaro, B.C.; Iacobellis, V.; Piccinni, A.F. Assessing reclaimed urban wastewater for reuse in agriculture: Technical and economic concerns for Mediterranean regions. Water 2019, 11, 1511. [Google Scholar] [CrossRef] [Green Version]
- Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Zambello, E.; Zanni, G.; Masotti, L. A project of reuse of reclaimed wastewater in the Po Valley, Italy: Polishing sequence and cost benefit analysis. J. Hydrol. 2012, 432–433, 127–136. [Google Scholar] [CrossRef]
- UN-Water Summary Progress Update 2021: SDG 6—Water and Sanitation for All; UN Water Publications: Geneva, Switzerland, 2021; pp. 1–58.
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual; Earthscan: London, UK, 2011; ISBN 9781849712798. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability of the blue water footprint of crops. Adv. Water Resour. 2020, 143, 103679. [Google Scholar] [CrossRef]
- Fridman, D.; Biran, N.; Kissinger, M. Beyond blue: An extended framework of blue water footprint accounting. Sci. Total Environ. 2021, 777, 146010. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Data. Available online: http://fenix.fao.org/faostat/internal/en/#data/QCL (accessed on 31 January 2022).
- IOC. World Olive Oil and Table Olive Figures. Available online: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/#figures (accessed on 31 January 2022).
- Jarosz, R.; Szerement, J.; Gondek, K.; Mierzwa-Hersztek, M. The use of zeolites as an addition to fertilisers—A review. Catena 2022, 213, 106125. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Handb. Food Anal. Chem. 2005, 2, 171–178. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil Vol. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Wissam, Z.; Ali, A.; Rama, H. Optimization of extraction conditions for the recovery of phenolic compounds and antioxidants from Syrian olive leaves. J. Pharmacogn. Phytochem. 2016, 5, 390–394. [Google Scholar]
- Ben Hassena, A.; Zouari, M.; Trabelsi, L.; Khabou, W.; Zouari, N. Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short term irrigation with treated wastewater. Agric. Water Manag. 2018, 207, 53–58. [Google Scholar] [CrossRef]
- Bourazanis, G.; Roussos, P.A.; Argyrokastritis, I.; Kosmas, C.; Kerkides, P. Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece. Agric. Water Manag. 2016, 163, 1–8. [Google Scholar] [CrossRef]
- Bedbabis, S.; Ferrara, G. Effects of long term irrigation with treated wastewater on leaf mineral element contents and oil quality in Olive cv. Chemlali. J. Hortic. Sci. Biotechnol. 2018, 93, 216–223. [Google Scholar] [CrossRef]
- Bedbabis, S.; Ferrara, G.; Ben Rouina, B.; Boukhris, M. Effects of irrigation with treated wastewater on olive tree growth, yield and leaf mineral elements at short term. Sci. Hortic. 2010, 126, 345–350. [Google Scholar] [CrossRef]
- Barouchas, P.E.; Vatista, P.; Kalantzis, E.; Moustakas, N.K. Seasonal changes of macronutrients concentration in olive trees grown in acid and in alkaline soils. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12498. [Google Scholar] [CrossRef]
- Erel, R.; Eppel, A.; Yermiyahu, U.; Ben-Gal, A.; Levy, G.; Zipori, I.; Schaumann, G.E.; Mayer, O.; Dag, A. Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance. Agric. Water Manag. 2019, 213, 324–335. [Google Scholar] [CrossRef]
- Singh, P.K.; Deshbhratar, P.B.; Ramteke, D.S. Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agric. Water Manag. 2012, 103, 100–104. [Google Scholar] [CrossRef]
- Alvarez-Holguin, A.; Sosa-Perez, G.; Ponce-Garcia, O.C.; Lara-Macias, C.R.; Villarreal-Guerrero, F.; Monzon-Burgos, C.G.; Ochoa-Rivero, J.M. The Impact of Treated Wastewater Irrigation on the Metabolism of Barley Grown in Arid and Semi-Arid Regions. Int. J. Environ. Res. Public Health 2022, 19, 2345. [Google Scholar] [CrossRef] [PubMed]
- Al-Suhaibani, N.; Seleiman, M.F.; El-Hendawy, S.; Abdella, K.; Alotaibi, M.; Alderfasi, A. Integrative effects of treated wastewater and synthetic fertilizers on productivity, energy characteristics, and elements uptake of potential energy crops in an arid agro-ecosystem. Agronomy 2021, 11, 2250. [Google Scholar] [CrossRef]
- Arji, I.; Ahmadipour, S.; Ebadi, A.; Abdosi, V. Biochemical changes of some olive (Olea europaea L.) cultivars under water-deficit stress. Acta Hortic. 2021, 1315, 383–390. [Google Scholar] [CrossRef]
- Tekaya, M.; Mechri, B.; Dabbaghi, O.; Mahjoub, Z.; Laamari, S.; Chihaoui, B.; Boujnah, D.; Hammami, M.; Chehab, H. Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality. Agric. Water Manag. 2016, 178, 180–188. [Google Scholar] [CrossRef]
- Petridis, A.; Therios, I.; Samouris, G.; Koundouras, S.; Giannakoula, A. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol. Biochem. 2012, 60, 1–11. [Google Scholar] [CrossRef]
- Varela, M.C.; Arslan, I.; Reginato, M.A.; Cenzano, A.M.; Luna, M.V. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). Plant Physiol. Biochem. 2016, 104, 81–91. [Google Scholar] [CrossRef]
- Mechri, B.; Tekaya, M.; Hammami, M.; Chehab, H. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochem. Syst. Ecol. 2020, 92, 104112. [Google Scholar] [CrossRef]
- Ahmadipor, S.; Arji, I.; Ebadi, A.; Abdossi, V. Physiological and biochemical responses of some olive cultivars (Olea europaea L.) to water stress. Cell. Mol. Biol. 2018, 64, 20–29. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Wang, G.; Kang, Y.; Ma, Q.; Wan, S. Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin. Agric. Water Manag. 2022, 264, 107255. [Google Scholar] [CrossRef]
Parameter | TaW | TWW |
---|---|---|
pH | 7.63 | 7.53 |
EC (dS m−1) | 0.58 | 1.02 |
NO3− (mg l−1) | 0.00 | 12.30 |
NH4+ (mg l−1) | 0.00 | 0.21 |
K+ (mg L−1) | 0.95 | 20.7 |
PO4−3 (mg L−1) | 0.00 | 8.99 |
Ca2+ (mg L−1) | 76 | 80.78 |
Mg2+ (mg L−1) | 15.6 | 11.6 |
Na+ (mg L−1) | 18.4 | 86 |
HCO3− (mg L−1) | 218 | 269 |
Cl− (mg L−1) | 28 | 68 |
SO42− (mg L−1) | 76 | 98.9 |
June | July | August | September | October | November | |
---|---|---|---|---|---|---|
Water per plant (mL) | 820 | 3700 | 4800 | 3500 | 2450 | 700 |
75% water per plant (mL) | 615 | 2775 | 3600 | 2625 | 1838 | 525 |
Treatment | Shoot Length Increase (%) | Stem Diameter Increase (%) | Leaves Increase (%) | Leaf Area (cm2) | Plant Biomass (g) |
---|---|---|---|---|---|
TaW | 35.9 a | 16.4 c | 69.2 a | 583.8 b | 28.6 a |
TaW75% | 27.7 b | 10.7 d | 46.7 b | 519.6 d | 25.9 b |
TWW | 35.8 a | 19.9 ab | 43.0 b | 618.7 a | 28.6 a |
TWW1/2F | 27.0 b | 22.8 a | 47.0 b | 556.6 c | 26.9 ab |
Zeolite | 39.3 a | 19.5 b | 68.3 a | 570.0 bc | 27.9 ab |
Significance | *** | *** | *** | *** | *** |
Treatment | Chlorophyll a (mg g−1) | Chlorophyll b (mg g−1) | Total Chlorophyll (mg g−1) | Carotenoids (mg g−1) |
---|---|---|---|---|
TaW | 1.16 b | 0.41 b | 1.57 c | 0.31 c |
TaW75% | 1.23 b | 0.45 b | 1.68 bc | 0.35 b |
TWW | 1.43 a | 0.52 a | 1.95 a | 0.39 a |
TWW1/2F | 1.42 a | 0.51 a | 1.92 a | 0.38 a |
Zeolite | 1.24 b | 0.45 b | 1.70 b | 0.33 bc |
Significance | *** | *** | *** | *** |
Treatment | Total Phenolics End (mg g−1) | Total Phenolics Midterm (mg g−1) |
---|---|---|
TaW | 39.5 a | 36.3 c |
TaW75% | 32.7 b | 35.7 c |
TWW | 33.1 b | 35.1 c |
TWW1/2F | 32.6 b | 49.5 a |
Zeolite | 33.9 b | 43.5 b |
Significance | *** | *** |
Treatment | Proline End (mg/100 g Fresh Leaf) | Proline Midterm (mg/100 g Fresh Leaf) |
---|---|---|
TaW | 4.8 ab | 4.6 c |
TaW75% | 4.5 b | 5.0 bc |
TWW | 5.0 ab | 5.3 ab |
TWW1/2F | 5.5 a | 5.9 a |
Zeolite | 5.2 ab | 4.8 bc |
Significance | *** | *** |
Treatment | CWUblue (L) | CWUblack (L) | CWUtotal (L) | WFblue (L plant−1) | WFblack (L Plant−1) | WFtotal (L Plant−1) | WFtotal (m3 Plant−1) |
---|---|---|---|---|---|---|---|
Tap | 15.97 | 0 | 15,97 | 15.97 | 0 | 15.97 | 0.01597 |
TWW | 1.50 | 14.47 | 15.97 | 1.5 | 14.47 | 15.97 | 0.01597 |
Volume of Water in Each Irrigation Event (m3) | Irrigation Events per Year | Total Water Volume per Period (m3) | Number of Plants Irrigated | Volume per Plant per Period (m3) (CWU) | WFblue (m3/plant/year) | |
---|---|---|---|---|---|---|
Full year irrigation | 27 | 72 | 1944 | 8000 | 0.243 | 0.243 |
5 month irrigation (summer) | 27 | 40 | 1080 | 8000 | 0.135 | 0.135 |
Amount of N per Plant (kg) | WFgrey (m3/Plant) |
---|---|
0.000144 | 0.001309 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotia, K.; Nanos, G.; Barouchas, P.; Giannelos, M.; Linardi, A.; Vallianatou, A.; Mpeza, P.; Tsirogiannis, I. Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees (Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater. Resources 2022, 11, 40. https://doi.org/10.3390/resources11050040
Fotia K, Nanos G, Barouchas P, Giannelos M, Linardi A, Vallianatou A, Mpeza P, Tsirogiannis I. Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees (Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater. Resources. 2022; 11(5):40. https://doi.org/10.3390/resources11050040
Chicago/Turabian StyleFotia, Konstantina, George Nanos, Pantelis Barouchas, Markos Giannelos, Aikaterini Linardi, Aikaterini Vallianatou, Paraskevi Mpeza, and Ioannis Tsirogiannis. 2022. "Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees (Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater" Resources 11, no. 5: 40. https://doi.org/10.3390/resources11050040
APA StyleFotia, K., Nanos, G., Barouchas, P., Giannelos, M., Linardi, A., Vallianatou, A., Mpeza, P., & Tsirogiannis, I. (2022). Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees (Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater. Resources, 11(5), 40. https://doi.org/10.3390/resources11050040