Sustainable Use of Petrothermal Resources—A Review of the Geological Conditions in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Criteria for Selecting an Optimum Structure for Carbon Capture and Storage (CCS) in Poland
- immobilization in reservoir traps—replacement of reservoir fluids with CO2,
- solution in surrounding reservoir fluids,
- geochemical reactions with reservoir fluids or rock building minerals, and
- if sealing is not perfect, migration outside the reservoir, where geological storage is performed.
2.2. Criteria for Selecting an Optimum Structure for Enhanced Geothermal Systems (EGSs) in Poland
- (1)
- temperatures of reservoir rocks—minimum 150 °C,
- (2)
- reservoir thickness—minimum 300 m,
- (3)
- low values of petrophysical parameters, and
- (4)
- reservoir depth—at least 4 km.
3. Geological and Thermal Conditions
4. An Overview of Hydrogeological Conditions and Thermo-Physical Properties in Poland
4.1. Enhanced Geothermal System (EGS)
4.2. Carbon Capture and Storage (CCS)
4.3. An Optimum Structure for Enhanced Geothermal Systems with CO2 as a Working Fluid in Poland
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamińska-Gawryluk, E. Green Economy Indicators in Poland 2019; Main Statistical Office, Statistical Office in Białystok: Warsaw/Białystok, Poland, 2019; p. 66.
- Les Landes, A.A.; Guillon, T.; Peter-Borie, M. Locating Geothermal Resources: Insights from 3D Stress and Flow Models at the Upper Rhine Graben Scale. Geofluids 2019, 24, 8494539. [Google Scholar]
- Moeck, I.S. Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.W.; Duchane, D.; Heiken, G.; Hriscu, V.T. Mining the Earth’s Heat: Hot Dry Rock Geothermal Energy; Springer: Berlin/Heidelberg, Germany, 2012; p. 657. [Google Scholar]
- Avanthi Isaka, B.L.; Ranjith, P.G.; Rathnaweera, T.D. The use of super-critical carbon dioxide as the working fluid in enhanced geothermal systems (EGSs): A review study. Sustain. Energy Technol. Assess. 2019, 36, 100547. [Google Scholar] [CrossRef]
- Yao, C.; Shao, Y.; Yang, J. Numerical Investigation on the Influence of Areal Flow on EGS Thermal Exploitation Based on the 3-D T-H Single Fracture Model. Energies 2018, 11, 3026. [Google Scholar] [CrossRef] [Green Version]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.W. A hot day rock geothermal energy concept utilizing super-critical CO2 instead of water. In Proceedings of the Twenty-Fifth Work-Shop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000; Stanford University: Stanford, CA, USA; pp. 233–238. [Google Scholar]
- Luo, F.; Xu, R.; Jiang, P. Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2—EGS). Energy 2014, 64, 307–322. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Pruess, K. On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers. Manag. 2008, 49, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Pritchett, J.W. On the relative effectiveness of H2O and CO2 as reservoir working fluids for EGS heat mining. Geotherm. Resour. Counc. Trans. 2009, 33, 235–239. [Google Scholar]
- Kumari, W.G.P.; Ranjith, P.G. Sustainable development of enhanced geothermal systems based on geotechnical research—A review. Earth Sci. Rev. 2019, 199, 102955. [Google Scholar] [CrossRef]
- Wakahama, H.; Mitoa, S.; Ohsumi, T.; Ueda, A.; Yajima, T.; Satoh, H.; Sugiyama, K.; Ozawa, A.; Ajima, S.; Todaka, N.; et al. A concept of CO2 georeactor sequestration at the Ogachi HDRsite, NE Japan. Energy Procedia 2009, 1, 3683–3689. [Google Scholar] [CrossRef] [Green Version]
- Suto, Y.; Liu, L.; Yamasaki, N.; Hashida, T. Initial behavior of granite in response to injection of CO2-saturatedfluid. Appl. Geochem. 2007, 2, 202–218. [Google Scholar] [CrossRef]
- Ueda, A.; Kato, K.; Ohsumi, T.; Yajima, T.; Ito, H.; Kaieda, H.; Metcalfe, R.; Takase, H. Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions. Geochem. J. 2005, 39, 417–425. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.C.; Morales, M.P.; Olasolo, A.; Agius, M.R. Analysis of working fluids applicable in Enhanced Geothermal Systems: Nitrous oxide an alternative working fluid. Energy 2018, 157, 157,150–161. [Google Scholar] [CrossRef]
- Randolph, J.B.; Saar, M.O. Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Gładysz, P.; Sowiżdżał, A.; Miecznik, M.; Pająk, L. Carbon dioxide-enhanced geothermal systems for heat and electricity production: Energy and economic analyses for central Poland. Energy Convers. Manag. 2020, 220, 1–17. [Google Scholar] [CrossRef]
- Gładysz, P.; Sowiżdżał, A.; Miecznik, M.; Hacaga, M.; Pająk, L. Techno-economic assessment of a combined heat and power plant integrated with carbon dioxide removal technology: A case study for Central Poland. Energies 2020, 13, 2841. [Google Scholar] [CrossRef]
- Maćkowski, T.; Sowiżdżał, A.; Wachowicz-Pyzik, A. Seismic methods in geothermal water resource exploration: Case study from Łódź Trough, central part of Poland. Geofluids 2019, 2019, 3052806. [Google Scholar] [CrossRef]
- Sowiżdżał, A. Geothermal energy resources in Poland—Overview of the current state of knowledge. Renew. Sustain. Energy Rev. 2018, 82, 4020–4027. [Google Scholar] [CrossRef]
- Górecki, W.; Sowiżdżał, A.; Hajto, M.; Wachowicz-Pyzik, A. Atlases of geothermal waters and energy resources in Poland. Environ. Earth Sci. 2015, 74, 12. [Google Scholar] [CrossRef] [Green Version]
- Sowiżdżał, A.; Górecki, W.; Hajto, M. Geological conditions of geothermal resource occurrences in Poland. Geol. Q. 2020, 64, 185–196. [Google Scholar] [CrossRef]
- Wójcicki, A.; Sowiżdżał, A.; Bujakowski, W. (Eds.) Evaluation of Potential, Thermal Balance and Prospective Geological Structures for Needs of Unconventional Geothermal Systems (Hot Dry Rocks) in Poland; Ministry of the Environment: Warsaw, Poland, 2013; p. 246. (In Polish)
- Sowiżdżał, A.; Papiernik, B.; Machowski, G.; and Hajto, M. Characterization of petrophysical parameters of the Lower Triassic deposits in a prospective location for enhanced geothermal system (central Poland). Geol. Q. 2013, 57, 729–743. [Google Scholar] [CrossRef] [Green Version]
- Sowiżdżał, A. Possibilities of petrothermal energy resources utilization in central part of Poland. Appl. Ecol. Environ. Res. 2016, 14, 555–574. [Google Scholar] [CrossRef]
- Bachu, S. Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Manag. 2000, 41, 953–970. [Google Scholar] [CrossRef]
- Tarkowski, R. Geological Sequestration of CO2; Academy of Sciences, Studies, Dissertations, Monographs; Publishing House of the Institute of Mineral and Energy Economy of the Polish Academy of Sciences: Kraków, Poland, 2005; p. 132. [Google Scholar]
- Holloway, S. Underground sequestration of carbon dioxide—A viable greenhouse gas migration option. In Proceedings of the 5thInt. Symp. On CO2 Fixation and the Efficient Utilization of Energy (C&E 2002), Tokyo, Japan, 4–6 March 2002; Tokyo Institute of Technology: Tokyo, Japan, 2002. [Google Scholar]
- Tarkowski, R.; Uliasz-Misiak, B. Geological structures (aquifers and hydrocarbon deposits) for underground CO2 storage in Poland. In Underground CO2 Storage in Poland in Deep Geological Structures (Oil, Gas and Aquifers); Tarkowski, R., Ed.; IGSMiE PAN Kraków: Kraków, Poland, 2005; pp. 69–111. [Google Scholar]
- Wójcicki, A. National Program Recognition of formations and structures for safe geological storage of CO2 together with their monitoring plans. Biuletyn Państwowego Instytutu Geologicznego 2010, 439, 9–16. [Google Scholar]
- Dubiński, J.; Wachowicz, J.; Koteras, A. Underground Carbon Dioxide Storage Possibilities of Using CCS Technology in Polish Conditions. Min. Geol. 2010, 5, 5–19. [Google Scholar]
- Tarkowski, R.; Uliasz-Misiak, B. Prospects for the use of carbon dioxide in enhanced geothermal systems in Poland. J. Clean. Prod. 2019, 229, 1189–1197. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; Dipippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. An Assessment by an MIT-Led Interdisciplinary Panel; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006. [Google Scholar]
- Lu, S.M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Tenzer, H. Development of Hot Dry Rock Technology. GHC Bull. 2001, 22, 1–9. [Google Scholar]
- Sausse, J.; Dezayes, C.; Genter, A. From geological interpretation and 3D modelling to the characterization of the deep seated EGS reservoir of Soultz (France). In Proceedings of the European Geothermal Congress, Unterhaching, Germany, 30 May–1 June 2007. [Google Scholar]
- Sowiżdżał, A.; Kaczmarczyk, M. Analysis of thermal parameters of Triassic, Permian and Carboniferous sedimentary rocks in central Poland. Geol. J. 2016, 51, 65–67. [Google Scholar]
- Sowiżdżał, A.; Semyrka, R. Analyses of permeability and porosity of sedimentary rocks in terms of unconventional geothermal resource explorations in Poland. Geologos 2016, 22, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Majorowicz, J.; Polkowski, M.; Grad, M. Thermal properties of the crust and the lithosphere–asthenosphere boundary in the area of Poland from the heat flow variability and seismic data. Int. J. Earth Sci. 2019, 108, 649–672. [Google Scholar] [CrossRef] [Green Version]
- Berthelsen, A. From Precambrian to Variscan Europe. In A Continent Revealed—The European Geotraverse; Blundell, D.J., Freeman, R., Mueller, S., Eds.; Cambridge University Press: Cambridge, MA, USA, 1992; pp. 153–164. [Google Scholar]
- Dadlez, R.; Marek, S.; Pokorski, J. Geological Map of Poland without Cenozoic Formations, 1:1,000,000; Polish Geological Institute: Warsaw, Poland, 2000.
- Szewczyk, J.; Gientka, D. Terrestrial heat flow density in Poland—A new approach. Geol. Q. 2009, 53, 125. [Google Scholar]
- Grad, M.; Polkowski, M.; Ostaficzuk, S.R. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland. Tectonophysics 2016, 666, 188–210. [Google Scholar] [CrossRef]
- Santaa, G.D.; Galgaro, A.; Sassi, R.; Cultrera, M.; Scotton, P.; Mueller, J.; Bertermann, D.; Mendrinos, D.; Pasquali, R.; Perego, R.; et al. An updated ground thermal properties database for GSHP applications. Geothermics 2020, 85, 101758. [Google Scholar] [CrossRef]
- Blöcher, G.; Reinsch, T.; Henninges, J.; Milsch, H.; Regenspurg, S.; Kummerow, J.; Francke, H.; Kranz, S.; Saadat, A.; Zimmermann, G.; et al. Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck. Geothermics 2016, 63, 27–43. [Google Scholar] [CrossRef]
- Guterch, A.; Grad, M. Lithospheric structure of the TESZ in Poland based on modern seismic experiments. Geol. Q. 2006, 50, 23–32. [Google Scholar]
- Hajto, M.; Góecki, W. Geological analysis and assessment of geothermal energy resources in the Polish Lowlands. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. [Google Scholar]
- Górecki, W. (Ed.) Atlas of Geothermal Waters and Energy Resources in the Western Carpathians; Ministry of Environment, ZSE AGH: Krakow, Poland, 2011.
- Buła, Z.; Żaba, J. The tectonic position of the Upper Silesian Coal Basin against the background of the Precambrian and Lower Palaeozoic subsoil. In Proceedings of the LXXVI Scientific Congress of the Polish Geological Society, Rudy near Rybnik: Geology and Environmental Protection Issues in the Upper Silesian Region, Warsaw, Poland, 14–16 September 2005. [Google Scholar]
- Buła, Z.; Żaba, J.; Habryn, J. Tectonic regionalization of Poland—Southern Poland (Upper Silesian Block and Lesser Poland Block). Geol. Rev. 1998, 56, 10. [Google Scholar]
- Żaba, J. Structural Evolution of the Lower Palaeozoic Deposits in the Border Zone of the Upper Silesian and Lesser Poland Blocks; Polish Geological Institute Works, CLXVI: Warsaw, Poland, 1999.
- Różkowski, A. Hydrogeological environment of geothermal waters in the productive carbon formations of the Upper Silesian Coal Basin. In Geothermal Energy in Underground Mines; Małolepszy, Z., Ed.; Scientific Works of the Faculty of Earth Sciences, University of Silesia: Sosnowiec, Poland, 2001; p. 17. [Google Scholar]
- Karwasiecka, M. Geothermal Atlas of the Upper Silesian Coal Basin; Polish Geological Institute: Warsaw, Poland, 1996.
- Karwasiecka, M. Thermal field of the Upper Silesian Coal Basin. In Geothermal Energy in Underground Mines; Małolepszy, Z., Ed.; Scientific Works of the Faculty of Geosciences, University of Silesia: Sosnowiec, Poland, 2002; p. 17. [Google Scholar]
- Karwasiecka, M. Rock mass temperature map at the level of −3000 m. In Atlas of Geothermal Energy Resources of the Upper Silesia Region; Solik-Heliasz, E., Ed.; GIG: Katowice, Poland, 2009. [Google Scholar]
- Górecki, W. (Ed.) Atlas of Geothermal Resources of Mesozoic Formations in the Polish Lowlands; Ministry of Environment, ZSE AGH: Krakow, Poland, 2006.
- Jaskowiak-Schoeneichowa, M. Geological Structure of the Szczecin Trough and the Gorzów Block; Polish Geological Institute, XCVI: Warsaw, Poland, 1979; p. 178.
- Miecznik, M.; Sowiżdżał, A.; Tomaszewska, B.; Pająk, L. Modelling geothermal conditions in part of the Szczecin Trough—The Chociwel area. Geologos 2015, 21, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Stupnicka, E. Regional Geology of Poland; Warsaw University Press: Warsaw, Poland, 1997. [Google Scholar]
- Mizerski, W. Geology of Poland; Polish Scientific Publishers PWN: Warsaw, Poland, 2011; p. 4. [Google Scholar]
- Karnkowski, P. Deep Geological Cross-Sections through the Polish Lowlands; Geological Publishers: Warsaw, Poland, 1980. [Google Scholar]
- Narkiewicz, M.; Dadlez, R. Geological regionalization of Poland: General rules and scheme of division in undercenozoic and underpermian plain. Geol. Rev. 2008, 56, 5. [Google Scholar]
- Szyperko-Teller, A. The Lower Triassic. In Epicontinental Permian and Mesozoic in Poland; Marek, S., Pajchlowa, M., Eds.; Polish Geological Institute: Warsaw, Poland, 1997; Volume 153, pp. 83–132. [Google Scholar]
- Sowiżdżał, A.; Hajto, M.; Hałaj, E. Thermal waters of central Poland: A case study from Mogilno-Łódź Trough, Poland. Environ. Earth Sci. 2020, 79, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tarkowski, R.; Uliasz-Misiak, B.; Wójcicki, A. CO2 storage capacity of deep aquifers and hydrocarbon fields in Poland—EU GeoCapacity Project results. Energy Procedia 2009, 1, 2671–2677. [Google Scholar]
- Bujakowski, W.; Barbacki, A.; Miecznik, M.; Pająk, L.; Skrzypczak, R.; Sowiżdżał, A. Modelling geothermal and operating parameters of EGS installations in the Lower Triassic sedimentary formations of the central Poland area. Renew. Energy 2015, 80, 44–453. [Google Scholar] [CrossRef]
- The National Centre for Emissions Management (KOBiZE). The Indicators of Pollutants Emission Caused by Fuels Burning, Boilers with Thermal Power up to 5 MW; IOŚ-PIB: Warsaw, Poland, 2015. [Google Scholar]
- Gosnold, W.D.; McDonald, M.R.; Klenner, R.; Merriam, D. Thermostratigraphy of the Williston Basin. GRC Trans. 2012, 36, 663–670. [Google Scholar]
- Wójcicki, A. Geothermal Energy versus CCS and CCU. Biul. Państwowego Inst. Geol. 2012, 448, 239–246. [Google Scholar]
- Wu, Y.; Li, P. The potential of coupled carbon storage and geothermal extraction in a CO2-enhanced geothermal system: A review. Geotherm. Energy 2020, 8, 19. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef] [Green Version]
Type of Rock | Min Value | Max Value |
---|---|---|
Sedimentary rocks | 0.59 | 7.70 |
Conglomerate | 1.50 | 5.10 |
Sandstone | 0.72 | 6.50 |
Clay-mudstone | 0.59 | 3.48 |
Limestone | 0.60 | 5.01 |
Dolomite | 0.61 | 5.73 |
Marlstone | 1.78 | 2.90 |
Gypsum | 1.15 | 2.80 |
Anhidrite | 1.50 | 7.70 |
Type of Reservoir Rocks | Area | Reservoir Temperature [°C]/at Depth [m b.s.l.] |
---|---|---|
crystalline | Karkonosze | 165/4000 |
volcanic | Gorzów | 160/4300 |
sedimentary | Szczecin Trough (area no.1) | 150/5000 |
sedimentary | Mogilno-Łódź Trough (area no.2) | 165–195/5000–6500 |
sedimentary | Upper Silesian (area no.3) | 170/5000 |
Stratigraphy | Bulk Density [kg/m3] | Porosity [-] | Permeability [mD] | Thermal Conductivity [W/m°C] | Specific Heat [J/kg·C] |
---|---|---|---|---|---|
Upper Triassic | 2750 | 0.001 | 0.01 | 2.10 | 1000 |
Middle Triassic | 2710 | 0.014 | 0.02 | 2.92 | 800 |
Lower Triassic | 2710 | 0.025 | 0.1 | 2.40 | 950 |
Zechstein | 2200 | 0.005 | 0.001 | 5.00 | 1000 |
Rotliegend | 2710 | 0.03 | 0.1 | 2.65 | 1100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowiżdżał, A.; Gładysz, P.; Pająk, L. Sustainable Use of Petrothermal Resources—A Review of the Geological Conditions in Poland. Resources 2021, 10, 8. https://doi.org/10.3390/resources10010008
Sowiżdżał A, Gładysz P, Pająk L. Sustainable Use of Petrothermal Resources—A Review of the Geological Conditions in Poland. Resources. 2021; 10(1):8. https://doi.org/10.3390/resources10010008
Chicago/Turabian StyleSowiżdżał, Anna, Paweł Gładysz, and Leszek Pająk. 2021. "Sustainable Use of Petrothermal Resources—A Review of the Geological Conditions in Poland" Resources 10, no. 1: 8. https://doi.org/10.3390/resources10010008
APA StyleSowiżdżał, A., Gładysz, P., & Pająk, L. (2021). Sustainable Use of Petrothermal Resources—A Review of the Geological Conditions in Poland. Resources, 10(1), 8. https://doi.org/10.3390/resources10010008